Page 257 - Semiconductor For Micro- and Nanotechnology An Introduction For Engineers
P. 257

Interacting Subsystems
                             This fundamental relation includes the effects of mechanical deforma-
                             tion, electric and magnetic fields, as well as thermal phenomena. In
                                                                  σ
                             (7.51) the intensive variables: the stress tensor  , the electric field vector
                             E  , the magnetic field vector H   and the scalar temperature  , are inde-
                                                                             T
                                                                          ε
                             pendent, and the extensive variables: the strain tensor  , the dielectric
                             displacement vector  D  , the magnetic induction vector  B   and the scalar
                                   S
                             entropy  , are dependent. By this property we can write that
                                     ∂ε         ∂ε         ∂ε         ∂ε
                               dε =  ------  dσ +  -------  dE +  --------  dH +  -------  dT  (7.52a)
                                     ∂σ        ∂E         ∂H          ∂T
                                        EHT        σHT        EσT        EHσ
                                     ∂D         ∂D         ∂D         ∂D
                               dD =  -------  dσ +  -------  dE +  --------  dH +  -------  dT  (7.52b)
                                     ∂σ         ∂E         ∂H         ∂T
                                        EHT        σHT        EσT        EHσ
                                     ∂B         ∂B         ∂B         ∂B
                               dB =  -------  dσ +  -------  dE +  --------  dH +  -------  dT  (7.52c)
                                     ∂σ         ∂E         ∂H         ∂T
                                        EHT        σHT        EσT        EHσ
                                     ∂S         ∂S         ∂S         ∂S
                               dS =  ------  dσ +  -------  dE +  --------  dH +  -------  dT  (7.52d)
                                     ∂σ        ∂E         ∂H          ∂T
                                        EHT        σHT        EσT        EHσ
                             With this starting point, we use a Legendre transformation (see Box 7.2)
                             to convert the fundamental relation from an internal energy formalism to
                             a Gibbs free energy formalism. In doing so, we switch the roles of pres-
                             sure and volume, of entropy and temperature, of electrical displacement
                             and electric field, and of magnetic induction and magnetic field, to obtain
                             the full and differential form of the Gibbs free energy

                                                              ⋅
                                                        ⋅
                                                                 –
                                         G =  U –  σ:ε –  ED –  HB TS            (7.53a)
                                                             ⋅
                                                      ⋅
                                       dG =  –  ε:dσ –  D dE –  B dH –  SdT      (7.53b)
                             But, by the first order homogeneous property of fundamental relations
                             (i.e., (B 7.2.4)), we can also write that
                                   ∂G          ∂G           ∂G          ∂G
                              dG =  -------  :dσ +  -------  ⋅  dE +  --------  ⋅  dH +  -------  dT  (7.54)
                                   ∂σ          ∂E          ∂H           ∂T
                                       EHT        σHT          EσT          EHσ
                             so that the following four associations may be made





                254          Semiconductors for Micro and Nanosystem Technology
   252   253   254   255   256   257   258   259   260   261   262