Page 95 - Separation process principles 2
P. 95

60  Chapter 2  Thermodynamics of Separation Operations


                 all  pressures  and  noncryogenic  temperatures,  the  Soave-   coefficient method is selected as follows. If the binary inter-
                 Redlich-Kwong  equation is suitable. For all temperatures,   action  coefficients  are  not  available,  select  the  UNIFAC
                 but not pressures in the critical region, the Benedict-Webb-   method, which should be considered as only a first approxi-
                 Rubin-Starling  [5,66,67] method is suitable.       mation.  If  the  binary  interaction  coefficients  are  available
                    If  the  mixture  contains  (PC), the  selection  depends  on   and splitting in two liquid phases will not occur,  select the
                 whether (LG) are present.  If they are, the PSRK method is   Wilson  or NRTL equation.  Otherwise, if  phase splitting  is
                 recommended. If not,  then a suitable liquid-phase  activity-   probable, select the NRTL or UNIQUAC equation.


                 SUMMARY

                 1.  Separation  processes  are  often  energy-intensive.  Energy   5.  For nonideal  vapor and liquid mixtures  containing  nonpolar
                 requirements are determined by applying the first law of thermody-   components,  certain  P-V-T  equation-of-state  models  such  as
                 namics.  Estimates  of  minimum  energy  needs  can  be  made  by   S-R-K,  P-R,  and L-K-P  can be used to estimate density, enthalpy,
                 applying the second law of  thermodynamics  with an entropy bal-   entropy, fugacity coefficients, and K-values.
                 ance or an availability balance.                    6.  For nonideal liquid solutions containing nonpolar and/or polar
                 2.  Phase equilibrium  is expressed  in terms of  vapor-liquid  and   components,  certain  free-energy  models  such  as  Margules,  van
                 liquid-liquid  K-values, which are formulated in terms of  fugacity   Laar, Wilson, NRTL, UNIQUAC, and UNIFAC can be used to es-
                 and activity coefficients.                          timate activity coefficients, volume and enthalpy of mixing, excess
                 3.  For separation systems involving an ideal-gas mixture and an   entropy of mixing, and K-values.
                 ideal-liquid  solution, all necessary thermodynamic properties can   7.  Special models are available for polymer solutions, electrolyte
                 be  estimated  from  the ideal-gas  law, a vapor heat-capacity equa-   solutions, and mixtures of polar and supercritical components.
                 tion, a vapor-pressure equation, and an equation for the liquid den-
                 sity as a function of temperature.
                 4.  Graphical  correlations  of  pure-component  thermodynamic
                 properties are widely available and useful for making rapid, manual
                 calculations at near-ambient pressure for an ideal solution.


                 REFERENCES
                  1.  MIX, T.W., J.S. DWECK, M. WEINBERG, R.C. ARMSTRONG, AIChE   16.  ROBBINS, L.A., Section 15, "Liquid-Liquid Extraction Operations and
                                              and
                 Symp. Sex, No. 192, Vol. 76, 15-23  (1980).         Equipment," in  R.H.  Perry,  D.  Green, and  J.O.  Maloney, Eds., Perry's
                  2.  FELDER, R.M., and R.W. ROUSSEAU, Elementary Principles of Chemical   Chemical Engineers'Handbook,  7th ed., McGraw-Hill, New  York  (1997).
                 Processes, 3rd ed., John Wiley & Sons, New York (2000).   17.  PITZER, K.S., D.Z. LIPPMAN, R.F. CURL, Jr., C.M. HUGGINS, and D.E.
                                                                           J. Am. Chem. Soc., 77,3433-3440  (1955).
                  3.  DE  NEVERS, N.,  and  J.D.  SEADER, Latin  Am.  J.  Heat  and  Mass   PETERSEN,
                 Transfer; 8,77-105  (1984).                         18.  REDLICH, O., and J.N.S. KWONG, Chem. Rev., 44,  233-244  (1949).
                  4.  PRAUSNITZ, J.M.,  R.N.  LICHTENTHALER, E.G.  DE  AZEVEDO,  19.  SHAH, K.K., and G. THODOS, hd. Eng. Chem., 57 (3), 30-37  (1965).
                                                 and
                 Molecular  Thermodynamics of  Fluid-Phase Equilibria, 3rd ed., Prentice-   20.  GLANVILLE, J.W., B.H. SAGE, and W.N. LACEY, Ind. Eng. Chem., 42,
                 Hall, Upper Saddle River, NJ  (1999).               508-5 13 (1950).
                  5.  STARLING, K.E., Fluid  Thermodynamic Properties for  Light  Petro-   21.  WILSON, G.M., Adv. Cryogenic Eng., 11,392400 (1966).
                 leum Systems, Gulf Publishing, Houston, TX (1973).
                                                                    22.  KNAPP, H., R. DORING, L. OELLRICH, U. PLOCKER, and J.M. PRAUSNITZ,
                  6.  SOAVE, G., Chem. Eng. Sci., 27,  1197-1203 (1972).   Vapor-Liquid Equilibria for  Mixtures of Low Boiling  Substances, Chem.
                  7.  PENG, D.Y., and D.B. ROBINSON, Ind. Eng  Chem. Fundam., 15,5944   Data. Ser., Vol. VI, DECHEMA (1982).
                 (1976).                                            23.  THIESEN, M., Ann. Phys., 24,467-492  (1885).
                  8.  PLOCKER, U.,  H.  KNAPP, and  J.M.  PRAUSNITZ, Ind.  Eng.  Chem.   24.  ONNES, K., Konink. Akad. Wetens, p. 633 (1912).
                 Process Des. Dev., 17,324-332  (1978).             25.  WALAS, S.M., Phase  Equilibria  in  Chemical  Engineering,  Butter-
                  9.  CHAO, K.C., and J.D. SEADER,AIC~EJ., 7,598-605  (1961).   worth, Boston (1985).
                 10.  GRAYSON, H.G., and C.W. STREED, Paper 20-P07, Sixth World Petro-   26.  LEE, B.I., and M.G. KESSLER, AIChE J., 21,510-527  (1975).
                 leum Conference, Frankfurt, June 1963.             27.  EDMISTER, W.C., Hydrocarbon Processing, 47 (9), 239-244  (1968).
                 1  I.  POLING, B.E., J.M. PRAUSNITZ, and J.P. O'CONNELL, The Properties of   28.  YARBOROUGH, L., J. Chem. Eng. Data, 17, 129-133  (1972).
                 Gases and L~quids, 5th ed., McGraw-Hill, New York (2001).
                                                                    29.  PRAUSNIZ, J.M., W.C.  EDMISTER, and  K.C. CHAO, AIChE  J.,  6,
                 12.  RACKETT, H.G., J. Chem. Eng. Data, 15,5 14-5 17  (1970).   214-219 (1960).
                 13.  YAWS, C.L., H.-C. YANG, J.R. HOPPER, and W.A. CAWLEY, Hydrocar-   30.  HILDEBRAND, J.H., J.M. PRAUSNITZ, and  R.L. SCOTT, Regular  and
                 bon Proces~ing, 71 (I), 103-106  (1991).           Related Solutions, Van Nostrand Reinhold, New York (1970).
                 14.  FRANK, J.C., G.R. GEYER, and H. KEHDE, Chem. Eng. Prog., 65 (2).   31.  YERAZUNIS, S., J.D.  PLOWRIGHT, and  F.M.  SMOLA, AIChE  J.,  10,
                 79-86  (1969).                                     660-665  (1964).
                 15.  HADDEN, S.T., and  H.G.  GRAYSON, Hydrocarbon Process., Petrol.   32.  HER~SEN, R.W., and J.M. PRAUSNITZ, Chem. Eng. Sci., 18,485-494
                 RQner; 40 (9), 207-218  (1961).                    (1963).
   90   91   92   93   94   95   96   97   98   99   100