Page 96 - Separation process principles 2
P. 96

Exercises  61


       33.  EWELL, R.H., J.M. HARRISON, and L.  BERG, Ind.  Eng.  Chem., 36,   5 1.  GMEHLING, J., P.  RASMUSSEN, and A. FREDENSLUND, Ind. Eng. Chem.
       871-875  (1944).                                   Process Des. Dev., 21, 118-127  (1982).
       34.  VAN NESS, H.C.,  C.A. SOCZEK, and  N.K.  KOCHAR, Chem. Eng.   52.  LARSEN, B.L., P.  RASMUSSEN, and A. FREDENSLUND, Ind. Eng. Chem.
                                             J.
       Data, 12,346-351 (1967).                           Res., 26,2274-2286  (1987).
       35.  SINOR, J.E., and J.H. WEBER, Chem. Eng. Data, 5,243-247  (1960).   53.  GMEHLING, J.,  J. LI, and M.  SCHILLER, Ind.  Eng.  Chem. Res.,  32,
                             J.
                                                          178-193 (1993).
       36.  ORYE, R.V.,  and  J.M. PRAUSNITZ, Ind.  Eng.  Chem.,  57  (5).  18-26
       (1965).                                            54.  WIT~IG, R., J. LOHMANN, and J. GMEHLING, Ind. Eng. Chem. Res., 42,
                                                          183-188  (2003).
       37.  WILSON, G.M., J. Am. Chem. Soc., 86,127-130  (1964).
                                                          55.  TAKEUCHI, S., T. NITTA, and T.  KATAYAMA, J.  Chem. Eng. Japan, 8,
       38.  CUKOR, P.M.,  and  J.M.  PRAUSNITZ, Inst.  Chem. Eng.  Symp.  Sex
       No. 32, 3,88 (1969).                               248-250  (1975).
                                                          56.  STRUBL, K.,  V.  SVOBODA, R.  HOLUB, and  J.  PICK, Collect.  Czech.
       39.  GMEHLING, J., and U. ONKEN, Vapor-Liquid Equilibrium Data Collec-
                                                          Chem. Commun., 35,3004-3019  (1970).
       tion, DECHEMA Chem. Data Ser., 1-8,  (1977-1984).
                                                          57.  KISER, R.W., G.D. JOHNSON, and M.D. SHETLAR, J.  Chem. Eng. Data,
       40.  HIRANUMA, M., J. Chem. Eng. Japan, 8, 162-163 (1957).
                                                          6,338-341  (1961).
       41.  RENON, H., and J.M. PRAUSNITZ, AlChE J., 14,135-144  (1968).
                                                          58.  HOLDERBAUM, T.,  and  J.  GMEHLING, Fluid  Phase  Equilibria,  70,
       42.  RENON, H., and J.M. PRAUSNITZ, Ind. Eng. Chem. Process Des. Dev.,
                                                          251-265  (1991).
       8,413419 (1969).
                                                          59.  FISCHER, K., and J. GMEHLING, Fluid Phase Equilibria, 121, 185-206
       43.  ABRAMS, D.S., and J.M. PRAUSNITZ, AIChE J., 21,  116-128  (1975).
                                                          (1996).
       44.  ABRAMS, D.S., Ph.D.  thesis in  chemical engineering, University of   60.  PITZER, K.S., J. Phys. Chem., 77, No. 2,268-277  (1973).
       California, Berkeley, 1974.
                                                          61.  CHEN, C.-C.,  H.I.  Bm, J.F.  BOSTON, and  L.B.  EVANS, AIChE
       45.  PRAUSNITZ, J.M.,  T.F.  ANDERSON, E.A.  GRENS, C.A.  ECKERT, R.
                                                          Journal, 28,588-596  (1982).
       HSIEH, and J.P.  O'CONNELL, Computer Calculations for  Multicomponent
       Vapor-Liquid  and  Liquid-Liquid  Equilibria,  Prentice-Hall, Englewood   62.  CHEN, C.-C., and L.B. EVANS, AIChE Journal, 32,444-459  (1986).
       Cliffs, NJ  (1980).                                63.  MOCK, B.,  L.B.  EVANS, and  C.-C.  CHEN, AIChE  Journal,  28,
                                                          1655-1664 (1986).
                    A.,
       46.  FREDENSLUND, J.  GMEHLING, M.L.  MICHELSEN, RASMUSSEN,
                                             P.
                    Ind.
       and J.M. PRAUSNKZ, Eng. Chem. Process Des. Dev., 16,450462 (1977).   64.  CHEN, C.-C., Fluid Phase Equilibria, 83,301-312 (1993).
       47.  WILSON, G.M., and C.H. DEAL, Ind. Eng. Chem. Fundam., 1,2623   65.  LEE, B.I.,  and  M.G.  KESLER, AIChE  Journal,  21,  510-527
       (1962).                                            (1975).
       48.  DERR, E.L., and C.H. DEAL, Inst. Chem. Eng. Symp. Se,: No. 32, 3,   66.  BENEDICT, M., G.B. WEBB, and L.C. RUBIN, Chem. Eng. Progress, 47
       40-51 (1969).                                      (8), 419 (1951).
       49.  FREDENSLUND, A,, R.L. JONES, and  J.M. PRAUSNITZ, AlChE  J.,  21,   67.  BENEDICT, M., G.B. WEBB, and L.C. RUBIN, Chem. Eng. Progress, 47
       1086-1099  (1975).                                 (9). 449 (1951).
       50.  FREDENSLUND, A.,  J.  GMEHLING, and  P.  RASMUSSEN, Vapor-Liquid
       Equilibria  Using  UNIFAC,  A  Group  Contribution  Method,  Elsevier,
       Amsterdam (1977).
       EXERCISES
       Section 2.1
       2.1  A hydrocarbon  stream in a petroleum refinery is to be sepa-   2.2  In petroleum refineries, a mixture of paraffins and cycloparaf-
       rated at  1,500 kPa into two products under the conditions shown   fins is commonly reformed in a fixed-bed catalytic reactor to pro-
       below. Using the data given, compute the minimum work of sepa-   duce  blending  stocks  for  gasoline  and  aromatic  precursors  for
       ration, Wmi,,  in W/h for To = 298.15 K.           making petrochemicals.  A typical  multicomponent  product  from
                                                          catalytic reforming  is  a  mixture  of  ethylbenzene  with  the  three
                                  kmollh                  xylene isomers. If  this mixture is separated, these four chemicals
                                                          can then be subsequently processed to make styrene, phthalic an-
                  Component   Feed   Product 1            hydride, isophthalic acid, and terephthalic acid. Compute, using the
                                                          following  data,  the  minimum  work  of  separation  in  Btuh  for
                 Ethane        30       30
                                                          To = 560°R if the mixture below is separated at 20 psia into three
                  Propane     200      192                products.
                  n-Butane    370        4
                                                                                      Split Fraction (SF)

                                                                        Feed,    Product   Product   Product
                          Feed     Product 1   Product 2   Component   IbmoYh      1         2         3
       Phase condition    Liquid     Vapor      Liquid    Ethylbenzene   150
       Temperature, K       364       313         394     p-Xylene       190
       Enthalpy, Who1     19,480    25,040      25,640    m-Xylene       430
       Entropy, Whol-K    36.64      33.13       54.84    o-Xylene       230
   91   92   93   94   95   96   97   98   99   100   101