Page 373 - Six Sigma Demystified
P. 373

Part 3  S i x   S i g m a  To o l S        353




                             Coefficients  Standard Error  VIF  t Statistic  p Value  Lower 95%  Upper 95%
                     Intercept  	45.57286  	17.2869763       	 2.636253991  0.021723  	 7.907775  	83.23795
                     Factor	A  	 0.287911  	 0.198068624  1.003  	 1.453591774  0.171708  	 –0.14364  	 0.719465
                     Factor	B  	 –0.38017  	 0.118088416  1.000  	 –3.219371735  0.007363  	 –0.63746  	 –0.12288
                     Factor	C  	 0.011149  	 0.048634311  1.003  	 0.229234568  0.822547  	 –0.09482  	 0.117114




























                           Interpretation

                           The  statistical  methods  used  to  develop  the  regression  model  include  an
                           ANOVA table. Analysis of variation is a statistical tool for partitioning error
                           among terms. For simple linear regressions, the ANOVA table provides an indi-

                           cation of the statistical significance of the regression by partitioning the varia-
                           tion into two components:

                             1. Variability accounted for by the regression line: and regression sum of
                                squares:

                                                             n
                                                       SS = ∑ ( ˆ y −  y) 2
                                                         R      1
                                                            i =1
                             2. Variability not accounted for by regression line: error sum of squares:


                                                            n
                                                                   y
                                                      SS = ∑ ( y − ˆ ) 2
                                                         E      i   1
                                                            i =1
   368   369   370   371   372   373   374   375   376   377   378