Page 26 - Standard Handbook Of Petroleum & Natural Gas Engineering
P. 26

Geometry    15

                         volume  =  1/3  altitude  area of  base  =  1/6   hran
                         lateral area =  1/2  slant  height  perimeter of  base  =  1/2   san
                         where  r  = radius  of  inscribed circle
                               a  = side  (of regular polygon)
                               n  = number  of  sides
                               s  =  JTTi7

                         (vertex of  pyramid  directly  above  center of  base)

                         Right  circular cone
                         volume  =  1/3   zr2h
                         lateral area = zrs
                         where  r  = radius  of  base
                               h  = altitude
                               s  = slant  height  =  d  m


                         Any  pyramid  or cone
                         volume  =  1/3   Bh
                         where B  = area of  base
                               h  = perpendicular distance from vertex  to plane in  which base  lies
                         Wedge  (Figure  1-20)


                                       a.














                         (Rectangular base; a, parallel to a,a and at distance h  above base)
                         volume  =  1/6   hb(2a +  a,)
                         Sphere
                         volume  = V  = 4/3   zrJ = 4.188790r5 =  1/6   zd3 = 0.523599d’
                         area = A  = 4zr2 = nd2
                         where r  = radius
                              d  = 2r  = diameter =    = 1.240706 =      = 0.56419fi
   21   22   23   24   25   26   27   28   29   30   31