Page 31 - Standard Handbook Of Petroleum & Natural Gas Engineering
P. 31

20    Mathematics
                                Rules of  Multiplication and Simple Factoring


                     a*b=b*a

                     (ab)c = a(bc)
                     a(b + c) = ab  + ac

                     a(-b)  = -ab  and -a(-  b) = ab
                     (a + b)(a - b) = a2 - b2

                     (a + b)2 = a2 + 2ab  + b2
                   and

                     (a - b)2 = a2 - 2ab  + b2
                     (a + b)s =  a3 + 3a2 + 3ab2 + bS
                   and

                     (a - b)s = a3  - 3a2 + 3ab2  - bs

                   (For higher  order polynomials  see  the  section  “Binomial Theorem”)
                   a” + b” is  factorable  by  (a + b) if  n  is  odd, thus
                     a3  + b” = (a + b)(a2 - ab  + b2)

                   and a” - b” is  factorable  by  (a - b), thus
                      a” - b” = (a - b)(a”-’ + a”- 2b  + . . . + abn-2  + bn-1 1


                                                 Fractions
                     The numerator  and denominator  of a fraction  may  be  multiplied or divided
                    by  any quantity  (other than  zero) without  altering the  value  of  the fraction, so
                    that,  if  m #  0,

                      ma+mb+mc - a+b+c
                                  -
                        mx+my         X+Y
                      To  add  fractions,  transform  each  to  a  common  denominator and  add  the
                    numerators  (b,y #  0):





                      To  multiply  fractions  (denominators #  0):
   26   27   28   29   30   31   32   33   34   35   36