Page 11 - Statistics and Data Analysis in Geology
P. 11

Con tents

                 Matrix representation of vectors .........................................   334
                 Displaying spherical data .................................................   338
                 Testing hypotheses about spherical directional data  ................... 341
                   A test of randomness  .....................................................   341
               Fractal Analysis ..............................................................   342
                 Ruler procedure  ...........................................................   343
                 Grid-cell procedure ........................................................   346
                 Spectral procedures  .......................................................   351
                 Higher dimensional fractals  ..............................................   353
               Shape .........................................................................   355
                 Fourier measurements of shape ..........................................   359
               Spatial Analysis by ANOVA  ................................................   366
               Computer  Contouring .......................................................   370
                 Contouring by triangulation  ..............................................   374
                 Contouring by gridding ...................................................   380
                 Problems in contour mapping  ............................................   391
                 Extensions of contour mapping  ..........................................   394
               Trend Surfaces ...............................................................   397
                 Statistical tests of trends  .................................................   407
                 Two trend-surface models  ................................................   412
                 Pitfalls ......................................................................   414
               Kriging .......................................................................   416
                 Simple kriging .............................................................   418
                 Ordinary kriging ...........................................................   420
                 Universal kriging ..........................................................   428
                   Calculating the drift  .......................................................   433
                   An  example ...............................................................   435
                 Block kriging ...............................................................   437
               Exercises .....................................................................   443
               Selected Readings ...........................................................   452







              6 .  Analysis of Multivariate Data ...............................     461

                Multiple Regression .........................................................   462
                Discriminant  Functions  .....................................................   471
                 Tests of significance  ......................................................   477
                Multivariate Extensions of Elementary Statistics  .........................   479
                 Equality of two vector means .............................................   483
                 Equality of variance-covariance matrices  ................................   484

                Cluster  Analysis ..............................................................  487

              xiv
   6   7   8   9   10   11   12   13   14   15   16