Page 294 - Strategies and Applications in Quantum Chemistry From Molecular Astrophysics to Molecular Engineer
P. 294

AB INITIO CALCULATIONS OF POLARIZABILITIES IN MOLECULES                277

                       factor makes an extrapolation procedure possible in critical cases  (for example when
                       the low–lying states are of Rydberg character as the   states of CO).
                       This calculation  has shown the  importance  of  the  basis set  and in  particular the
                       polarization functions necessary in such computations. We have studied this problem
                       through the calculation of the static polarizability and even hyperpolarizability.  The
                       very good  results of the hyperpolarizabilities obtained for various systems give proof
                       of the  ability of our  approach  based on  suitable polarization  functions  derived from
                       an hydrogenic  model. Field–induced  polarization  functions have  been constructed
                       from the  first– and  second–order perturbed  hydrogenic  wavefunctions in which  the
                       exponent is determined by optimization with the maximum polarizability criterion.
                       We have demonstrated the necessity of describing the wavefunction the best we can, so
                       that the polarization functions participate solely in the calculation of polarizabilities
                       or hyperpolarizabilities.


                       References

                          1.  M. Rérat, C.  Pouchan, M.  Tadjeddine,  J.P.  Flament, H.P.  Gervais, and  G.
                             Berthier, Phys.  Rev. A43, 5832,  (1991)
                          2. M.  Ratner, Int.  J.  Quant.  Chem. 43, 5,  (1992)
                          3. E.N.  Svendsen and T.  Stroyer–Hansen, Theoret.  Chim.  Acta 45, 53,  (1977)
                            H.F. Hameka and E.N.  Svendsen, Int.  J.  Quant.  Chem. XI, 129, (1977)
                          4. a)  B.  Huron,  P.  Rancurel and  J.P. Malrieu, J.  Chem.  Phys. 58, 5745,  (1973);
                            E. Evangelisti, J.P. Daudey and J.P.  Malrieu , Chem.  Phys. 75, 91,  (1983)
                            b) R. Cimiraglia, J.  Chem.  Phys. 83, 1746, (1985)
                          5. M.  Tadjeddine,  J.P. Flament, N.El  Bakali  Kassimi,  H.P.  Gervais, G.  Berthier,
                             M. Rérat  and C.  Pouchan, J.  Chim.  Phys. 87, 989,  (1990)
                          6. N. El Bakali Kassimi, M. Tadjeddine, J.P. Flament, G. Berthier and H.P. Ger-
                            vais, J.  Mol.  Struct.  (THEOCHEM) 254, 177,  (1992)
                          7. M.  Karplus and H.J. Kolker, J.  Chem.  Phys. 39, 1493,  (1963)
                          8. J.G.  Kirkwood, Phys.  Z. 33, 39,  (1931)
                          9. J.P. Flament, H.P. Gervais and M. Rérat, J.  Mol.  Struct.  (THEOCHEM) 151,
                            39, (1987)
                         10. M. Rérat, Int.  J.  Quant.  Chem. 36, 169, (1989)
                         11.  C. Cohen–Tannoudji,  B. Diu  and  F.  Laloe, Mécanique Quantique,  Her-
                            mann,  Paris,  1973; C.  Cohen–Tannoudji, J.  Dupont–Roc, G.  Grynberg,
                            Processus d’interaction entre photons et  atomes, InterEditions/Editions du
                            CNRS, Paris,  1988.
                         12. A.C. Tanner and A.J. Thakkar, Int.  J.  Quant.  Chem. 24, 345,  (1983)
                         13. M.  Rérat,  M.  Mérawa and  C. Pouchan, Phys.  Rev. A45, 6263, (1992)
                         14. P.K.K.  Pandey and D.P. Santry,  J. Chem. Phys. 73, 2899,  (1980)
                         15. quoted in Ref.  19
   289   290   291   292   293   294   295   296   297   298   299