Page 163 - The Combined Finite-Discrete Element Method
P. 163
146 DEFORMABILITY OF DISCRETE ELEMENTS
material element in the initial configuration is unit volume, then the same material element
after deformation occupies a volume equal to (det F). The second term can be written
as follows:
−1 T
F −T = (F )
∂u ∂u ∂u
−1 T
1 +
∂x ∂y ∂z
∂v ∂v ∂v
1 + (4.71)
=
∂x ∂y ∂z
∂w ∂w ∂w
1 +
∂x ∂y ∂z
−T
˜ ˜ ˜
i x j x k x
i j
˜ ˜ ˜ ˜ ]
−T
= i y j y k y = [ ˜ ˜ k
˜ ˜
i z j z k z
Matrix
˜ i x j x k x
˜
˜
˜ ˜ ˜ (4.72)
i y j y k y
˜ ˜ ˜
i z j z k z
is not an orthogonal matrix, thus the inverse matrix of this matrix is a non-
orthogonal matrix:
−1 T
∂u ∂u ∂u
1 + T
∂x ∂y ∂z ˆ ˆ ˆ ˆ
˜ ˜ ˜ ˜
i i x j k x
x
∂v ∂v ∂v
ˆ ˆ ˆ ˆ ˆ
˜
1 + = ˆ = i ˜ j ˜ ˜ ˆ = [˜ ˜ ˜ ]
j y y i j k
∂x ∂y ∂z
k y
ˆ ˆ ˆ ˆ
˜ ˜ ˜ ˜
∂w ∂w ∂w k i z j k z
z
1 +
∂x ∂y ∂z
(4.73)
This inverse matrix represents the global components of a new triad of vectors
ˆ ˆ ˆ
(i, j, k) (4.74)
˜ ˜ ˜
This triad of vectors is associated with a deformed configuration. Vectors of this triad
have the following property:
ˆ ˆ ˆ
˜ ˜
˜ ˜
i · i = 1; j · i = 0; k · i = 0
˜ ˜
ˆ ˆ ˆ
˜ ˜ ˜ ˜ k · j = 0 (4.75)
i · j = 0;
j · j = 0;
˜ ˜
ˆ ˆ ˆ
i · k = 0;
˜ ˜ j · k = 0; k · k = 1
˜ ˜
˜ ˜