Page 163 - The Combined Finite-Discrete Element Method
P. 163

146    DEFORMABILITY OF DISCRETE ELEMENTS

            material element in the initial configuration is unit volume, then the same material element
            after deformation occupies a volume equal to (det F). The second term can be written
            as follows:

                                     −1 T
                             F −T  = (F )
                                           ∂u    ∂u       ∂u
                                                             −1  T
                                     
                                       1 +
                                          ∂x    ∂y       ∂z      
                                                             
                                                                 
                                                             
                                         ∂v        ∂v     ∂v
                                                                 
                                                             
                                                                 
                                              1 +                              (4.71)
                                 =                               
                                        ∂x        ∂y     ∂z  
                                                                 
                                                             
                                                                 
                                        ∂w      ∂w        ∂w  
                                                                 
                                                       1 +
                                         ∂x      ∂y        ∂z
                                                −T
                                              
                                     ˜   ˜   ˜
                                     i x  j x  k x
                                                      i j
                                     ˜   ˜   ˜              ˜ ]
                                                            −T
                                 =  i y  j y  k y   = [ ˜ ˜  k
                                     ˜   ˜
                                     i z  j z  k z
            Matrix
                                                     
                                            ˜ i x  j x  k x
                                                ˜
                                                    ˜
                                            ˜  ˜   ˜                           (4.72)
                                           i y  j y  k y 
                                            ˜   ˜   ˜
                                            i z  j z  k z
            is not an orthogonal matrix, thus the inverse matrix of this matrix is a non-
            orthogonal matrix:
                                        −1  T
                      ∂u    ∂u      ∂u
                
                  1 +                               T
                    ∂x     ∂y       ∂z            ˆ       ˆ   ˆ   ˆ  
                                                  ˜        ˜   ˜   ˜
                                                  i        i x  j  k x
                                                               x
                    ∂v        ∂v    ∂v
                                            
                                                                  
                                                          ˆ   ˆ          ˆ ˆ  ˆ
                                                    ˜
                         1 +                =   ˆ   =   i ˜  j ˜  ˜ ˆ   = [˜ ˜  ˜ ]
                                                   j       y   y          i j  k
                    ∂x        ∂y     ∂z            
                                                                  k y 
                                            
                                                  ˆ        ˆ   ˆ   ˆ
                                                  ˜        ˜   ˜   ˜
                   ∂w      ∂w        ∂w           k        i z  j  k z
                                                                z
                                  1 +
                    ∂x      ∂y        ∂z
                                                                                 (4.73)
            This inverse matrix represents the global components of a new triad of vectors
                                               ˆ ˆ ˆ
                                              (i, j, k)                          (4.74)
                                               ˜ ˜ ˜
            This triad of vectors is associated with a deformed configuration. Vectors of this triad
            have the following property:
                                      ˆ        ˆ          ˆ
                                    ˜ ˜
                                                       ˜ ˜
                                    i · i = 1;  j · i = 0;  k · i = 0
                                             ˜ ˜
                                      ˆ        ˆ          ˆ
                                    ˜ ˜      ˜ ˜       k · j = 0                 (4.75)
                                    i · j = 0;
                                             j · j = 0;
                                                       ˜ ˜
                                      ˆ        ˆ          ˆ
                                   i · k = 0;
                                   ˜ ˜       j · k = 0; k · k = 1
                                                       ˜ ˜
                                             ˜ ˜
   158   159   160   161   162   163   164   165   166   167   168