Page 158 - The Combined Finite-Discrete Element Method
P. 158

HOMOGENEOUS DEFORMATION        141

           where transformation matrix is given by
                                                ∂u     ∂u      ∂u
                                                                   
                                             1 +
                                              ∂x     ∂y      ∂z
                             ˜   ˜   ˜                             
                             i x  j x  k x
                                               ∂v        ∂v    ∂v
                                                                   
                                                                   
                             ˜   ˜   ˜
                                      
                            i y  j y  k y  =      1 +                       (4.44)
                                              ∂x        ∂y    ∂z   
                             ˜   ˜   ˜                             
                             i z  j z  k z    ∂w      ∂w        ∂w  
                                                             1 +
                                               ∂x      ∂y        ∂z
           By analogy, the components of vector a in the local deformed frame are calculated from
           the vector components in the local frame using the following transformation:
                                                      
                                              j           
                                             i ˜x  ˜ x  k ˜x
                                    a ˜x                  a x
                                                      
                                    a ˜y  =  i ˜y        a y
                                                  ˜ y  k ˜y 
                                              j                             (4.45)
                                     a ˜z                  a z
                                             i ˜z  j  k ˜z
                                                  ˜ z
           where the transformation matrix is given by
                                                     ∂u     ∂u       ∂u
                                                                        −1
                                                  1 +
                                          −1
                              ˜  ˜   ˜            ∂x     ∂y       ∂z
                i ˜x  j  ˜ x  k ˜x  i x  j x  k x                       
                                                                         
                                                    ∂v        ∂v     ∂v
                                                
                                                                        
                   j          ˜  ˜   ˜                                      (4.46)
               i ˜y  ˜ y  k ˜y  =  i y  j y  =        1 +            
                                        k y 
                                                   ∂x        ∂y     ∂z  
                                        ˜
                                    ˜
                i ˜z  j ˜ z  k ˜z  ˜ i z  j z  k z    ∂w   ∂w        ∂w  
                                                
                                                                         
                                                                  1 +
                                                    ∂x      ∂y        ∂z
           4.3 HOMOGENEOUS DEFORMATION
           Homogeneous deformation can be expressed as a composition of rotation g and stretch s:
                                        f(p) = g◦s 1 = s 2 g                    (4.47)
                                                      ◦
           The deformation gradient for homogeneous deformation is therefore given by
                                          F = RU = VR                           (4.48)
           where
                                             R =∇g
                                                                                 (4.49)
                                             U =∇s 1
                                             V =∇s 2
           It is worth mentioning that by definition of homogeneous deformation tensors F, R and U
           are constant tensors, i.e. they do not change from point to point (over the spatial domain).
   153   154   155   156   157   158   159   160   161   162   163