Page 156 - The Combined Finite-Discrete Element Method
P. 156

DEFORMATION GRADIENT       139

           Any rotation in three-dimensional space is characterised by the axis ψ of rotation and the
           angle of rotation ψ:
                                             ψ =|ψ|                             (4.35)
           For any vector a, the rotated configuration using this alternative way of calculating rotation
           is given as follows:

                                   1               1
                             Ra =    (ψa)ψ + a −     (ψa)ψ cos(ψ)+               (4.36)
                                   ψ 2            ψ 2
                                1
                                  (ψ × a) sin(ψ)
                                ψ

           The matrix of rotation tensor with respect to the orthonormal basis
                                                  ψ

                                            e 1 , e 2 ,                         (4.37)
                                                  |ψ|
           (where e 1 and e 2 are arbitrary unit vectors orthogonal to each other and orthogonal to
           vector ψ)isgiven by
                                                          
                                          cos ψ  − sin ψ  0
                                    R =    sin ψ  cos ψ  0                    (4.38)
                                            0       0     1
           Physical interpretation of rotation is given in Figure 4.6. Material element does not change
           its shape or size. It does not translate in space either. The material element rotates about
           axis ψ instead


           4.2.2   Transformation matrices


           Base vectors of a deformed local frame can be expressed using base vectors of the
           local frame:

                                                     ˜
                                                 ˜
                                         i = i x i + i y j + i z k               (4.39)
                                         ˜
                                            ˜
                                                       Deformed (rotated)
                                                       elemental volume


                                                     Initial elemental volume





                           ψ


                                   Figure 4.6  Rotation about point q.
   151   152   153   154   155   156   157   158   159   160   161