Page 152 - The Combined Finite-Discrete Element Method
P. 152

DEFORMATION GRADIENT       135

           Since the triad vectors of the deformed frame are fixed to the material points in the
           vicinity of material point p, it follows that the magnitude and orientation of this vectors
           changes with deformation gradient in the vicinity of the point p, and is given by

                                    ∂u    ∂u       ∂u                ∂u  
                                                      
                                1 +                                1 +
                                    ∂x    ∂y       ∂z
                                                                 ∂x 
                                                         1
                                  ∂v        ∂v     ∂v                   
                                                                   ∂v
                      ˜ i = Fi =       1 +                                 (4.16)
                                                           0
                                 ∂x        ∂y     ∂z         =    ∂x  
                                                           0            
                                                                      
                                  ∂w      ∂w        ∂w
                                                                  ∂w
                                                1 +
                                  ∂x      ∂y         ∂z              ∂x
                               ∂u     ∂v    ∂w

                       = 1 +       i +   j +   k
                               ∂x     ∂x    ∂x
           In the same way,
                                     ∂u     ∂u      ∂u               ∂u
                                                                     
                                  1 +
                                     ∂x     ∂y      ∂z
                                                               ∂y 
                                                           0         
                                    ∂v        ∂v    ∂v
                                                                 ∂v 
                        ˜ j = Fj =       1 +                =              (4.17)
                                                             1
                                   ∂x        ∂y    ∂z             ∂y  
                                                             0
                                                                     
                                   ∂w       ∂w        ∂w            ∂w
                                                                     
                                                  1 +
                                    ∂x      ∂y        ∂z             ∂y
                           ∂u    
    ∂v      ∂w
                         =    i + 1 +     j +    k
                           ∂y         ∂y      ∂y
           and
                                      ∂u    ∂u       ∂u              ∂u
                                                                     
                                  1 +
                                      ∂x    ∂y       ∂z
                                                                 ∂z  
                                    ∂v        ∂v     ∂v
                                                           0         
                                                                  ∂v 
                       ˜
                       k = Fk =          1 +               0   =           (4.18)
                                    ∂x        ∂y     ∂z
                                                                     
                                                           1      ∂z 
                                   ∂w      ∂w        ∂w            ∂w  
                                                   1 +
                                    ∂x      ∂y         ∂z            ∂z
                           ∂u    ∂v    
    ∂w
                         =    i +  j + 1 +      k
                           ∂z    ∂z         ∂z
           In other words, through the deformation process, vectors of the local triad
                                             (i, j, k)                          (4.19)
           are mapped onto the vectors of the deformed local triad:
                                             (i, j, k)                          (4.20)
                                              ˜ ˜ ˜
   147   148   149   150   151   152   153   154   155   156   157