Page 319 - The Mechatronics Handbook
P. 319

0066_frame_C14.fm  Page 33  Wednesday, January 9, 2002  1:51 PM









                       and a reference-output map can be found. Our goal is to find the bounded controller such that the tracking
                       error e(⋅):[t 0 ,∞)→E with E 0 ⊆  E  evolves in the specified closed set


                                                   (
                                     1
                        S e δ() =  { e ∈   : e 0 ∈  E 0 , x ∈ X X 0 ,U, R, D, Z, P), t ∈  [t 0 , ∞)
                                                   (
                                                           (
                                           (
                                                                        ∀
                                 (
                                                                               (
                                                                                         ∀
                          et()  ≤ ρ e t, e 0 ) +  ρ r r ) +  ρ d d ) +  ρ y y ) + δ, δ ≥ 0, e ∈  E E 0 , R, D, Y), t ∈  [t 0 , ∞)}
                       Here, ρ e (⋅) is the KL-function; ρ r (⋅), ρ d (⋅) and ρ y (⋅) are the K-functions.
                         A positive-invariant domain of stability is found for the closed-loop system with x 0  ∈X 0 , e 0  ∈Ε 0 , u ∈U,
                       r ∈R, d ∈D, z ∈Z and p ∈P. In particular,
                                                                                  +
                                                                              (
                                                            (
                                                                      (
                                S s =  { x ∈    , e ∈   : xt() ≤ ρ x t, x 0 ) +  ρ r r ) +  ρ d d ) δ,
                                                 1
                                           4
                                     ∀ x ∈ XX 0 ,U, R, D, Z, P), t ∈  [t 0 , ∞), et() ≤ ρ e t, e 0 ) + ρ r r )
                                            (
                                                           ∀
                                                                                        (
                                                                               (
                                         (
                                                 (
                                                               (
                                                         ∀
                                                                           ∀
                                     + ρ d d ) +  ρ y y ) +  δ, e ∈ EE 0 , R, D, Y ), t ∈  [t 0 , ∞)},
                       where ρ x (⋅) is the KL-function.
                         To study the robustness, tracking, and disturbance rejection, we consider a state-error set
                                    (
                                  XE X 0 , E 0 ,U, R, D, Z, P) =  ( {  x, e) ∈  X × E : x 0 ∈ X 0 , e 0 ∈ E 0 , u ∈  U,
                                                          r ∈  R, d ∈ D, z ∈  Z, p ∈ P, t ∈  [t 0 , ∞)}
                         The robust tracking, stability, and disturbance rejection are guaranteed if XE ⊆  S s  . The admissible set
                       S s  is found by using the Lyapunov stability theory [9], and
                                   
                               S s =   x ∈   ,e ∈   : x 0 ∈  X 0 , e 0 ∈  E 0 , u ∈  U, r ∈  R, d ∈  D, z ∈  Z, p ∈  P
                                         4
                                               1
                                                                     dV t, x, e)
                                                                         (
                                                   (
                                    r 1 x +  r 2 e ≤ V t, x, e) ≤ r 3 x +  r 4 e , ------------------------- ≤  –  r 5 x –  r 6 e ,
                                                                          dt
                                                                           ∀
                                                                (
                                                          ∀
                                           (
                                    ∀ x ∈  XX 0 ,U, R, P, Z, P), e ∈ EE 0 , R, D, Y ), t ∈  [t 0 , ∞)  
                                                                                      
                                                                                      
                       where ρ 1 (⋅), ρ 2 (⋅), ρ 3 (⋅) and ρ 4 (⋅) are the K ∞ -functions; and ρ 5 (⋅) and ρ 6 (⋅) are the K-functions.
                                            κ
                         If in  XE there exists a  C  Lyapunov function V(t,  x, e) such that for all  x 0 ∈  X 0 , e 0 ∈  E 0 , u ∈  U,
                       r ∈ R, d ∈  D, z ∈  Z,  and  p ∈  P  on [t 0 , ∞)  sufficient condition for stability (s1)
                                              r 1 x +  r 2 e ≤ V t, x, e) ≤ r 3 x +  r 4 e
                                                            (
                       and inequality
                                                   dV t, x, e)
                                                     (
                                                   ------------------------- ≤  – r 5 x –  r 6 e
                                                      dt
                       which is the sufficient condition for stability s2, hold, then
                         1. solution x(⋅):[t 0 ,∞)→X for closed-loop system is robustly bounded and stable,
                         2. convergence of the error vector e(⋅):[t 0 , ∞)→E to S e  is ensured in XE,
                         3. XE is convex and compact, and XE ⊆  S s .
                       That is, if criteria (s1) and (s2) are guaranteed, we have XE ⊆  S s .


                       ©2002 CRC Press LLC
   314   315   316   317   318   319   320   321   322   323   324