Page 179 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 179

166                                             Isoperimetric inequality

                       and hence the result.
                          Step 3. We now prove (6.2) for any A and B of the form
                                                   M            N
                                                   [           [
                                               A =    A µ ,B =    B ν
                                                   µ=1         ν=1
                       where A µ , B ν ∈ F, A ν ∩A µ = B ν ∩B µ = ∅ if µ 6= ν. The proof is then achieved
                       through induction on M + N. Step2hasprovedthe result when M = N =1.
                       We assume now that M> 1.We then choose i ∈ {1,..., n} and a ∈ R such that
                       if
                                  +            n            −             n
                                A = A ∩ {x ∈ R : x i >a} ,A = A ∩ {x ∈ R : x i <a}
                             +
                       then A and A contain at least one of the A µ , 1 ≤ µ ≤ M, i.e. the hyperplane
                                    −
                       {x i = a} separates at least two of the A µ (see Figure 7.2).























                                           Figure 6.2: separating hyperplane

                          We clearly have
                                               ¡  +  ¢   ¡  ¢
                                             M A    + M A  −  = M (A) .                 (6.6)
                       We next choose b ∈ R (such a b exists by an argument of continuity) so that if

                                  +             n           −             n
                                B = B ∩ {x ∈ R : x i >b} ,B = B ∩ {x ∈ R : x i <b}
                       then
                                          +
                                                    +
                                     M (A )    M (B )       M (A )    M (B )
                                                                 −
                                                                           −
                                             =          and         =         .         (6.7)
                                      M (A)     M (B)        M (A)     M (B)
   174   175   176   177   178   179   180   181   182   183   184