Page 199 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 199

186                                            Solutions to the Exercises


                       Applying the implicit function theorem we can find   0 > 0 and a function t ∈
                         1
                       C ([−  0 ,  0 ]) with t (0) = 0 such that
                                             G ( , t ( )) = 0, ∀  ∈ [−  0 ,  0 ]

                       which implies that u +  v + t ( ) w ∈ X.Note also that

                                     G   ( , t ( )) + G h ( , t ( )) t ( )= 0, ∀  ∈ [−  0 ,  0 ]
                                                           0
                       and hence
                                                 t (0) = −G   (0, 0) .
                                                  0
                       Sinceweknowthat

                                          F (0, 0) ≤ F ( , t ( )) , ∀  ∈ [−  0 ,  0 ]

                       we deduce that
                                                               0
                                             F   (0, 0) + F h (0, 0) t (0) = 0
                       and thus letting λ = F h (0, 0) be the Lagrange multiplier we find

                                               F   (0, 0) − λG   (0, 0) = 0
                       or in other words

                         b
                       Z
                                                  0
                                    0
                                                                     0
                                       0
                                                                  0
                                                                                0
                           {[f ξ (x, u, u ) v + f u (x, u, u ) v] − λ [g ξ (x, u, u ) v + g u (x, u, u ) v]} dx =0 .
                         a
                       Appealing once more to the fundamental lemma of the calculus of variations and
                       to the fact that v ∈ C  ∞  (a, b) is arbitrary we get
                                          0
                                                          ½                          ¾
                             d                              d
                                       0
                               [f ξ (x, u, u )] − f u (x, u, u )= λ  [g ξ (x, u, u )] − g u (x, u, u )  .
                                                                                   0
                                                    0
                                                                       0
                            dx                             dx
                                               1
                       Exercise 2.2.5. Let v ∈ C (a, b),   ∈ R and set ϕ ( )= I (u +  v).Since u is a
                                               0
                       minimizer of (P) we have ϕ ( ) ≥ ϕ (0), ∀  ∈ R, and hence we have that ϕ (0) = 0
                                                                                     0
                       (which leads to the Euler-Lagrange equation) and ϕ (0) ≥ 0. Computing the
                                                                     00
                       last expression we find
                                    b
                                  Z
                                     ©    2               02 ª             1
                                      f uu v +2f uξ vv + f ξξ v  dx ≥ 0, ∀v ∈ C (a, b) .
                                                    0
                                                                          0
                                   a
                                        ¡ ¢ 0
                       Noting that 2vv = v  2  and recalling that v (a)= v (b)= 0,we find
                                     0
                                Z  ½        µ            ¶   ¾
                                  b
                                         02         d       2               1
                                     f ξξ v + f uu −   f uξ v  dx ≥ 0, ∀v ∈ C (a, b) .
                                                                            0
                                 a                  dx
   194   195   196   197   198   199   200   201   202   203   204