Page 200 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 200

Chapter 2: Classical methods                                      187

                Exercise 2.2.6. i) Setting
                                           ½
                                               x    if x ∈ [0, 1/2]
                                   u 1 (x)=
                                              1 − x if x ∈ (1/2, 1]
                we find that I (u 1 )= 0. Observe however that u 1 /∈ X where
                                     ©     1                      ª
                                X = u ∈ C ([0, 1]) : u (0) = u (1) = 0 .
                Let  > 0.Since u 1 ∈ W  1,∞  (0, 1),we can find v ∈ C ∞  (0, 1) (hence in particular
                                    0                        0
                v ∈ X)suchthat
                                          ku 1 − vk W 1,4 ≤  .
                                        ¡  2   ¢ 2
                Note also that since f (ξ)= ξ − 1  we can find K> 0 such that
                                                ³            ´
                                                       3    3
                               |f (ξ) − f (n)| ≤ K 1+ |ξ| + |η|  |ξ − η| .
                Combining the above inequalities with Hölder inequality we get (K denoting a
                                                                          e
                constant not depending on  )
                                                         1
                                                       Z
                                                                      0
                                                              0
                        0 ≤ m ≤ I (v)= I (v) − I (u 1 ) ≤  |f (v ) − f (u )| dx
                                                                      1
                                                        0
                                Z
                                  1 n³              ´       o
                                                 0 3
                                           0 3
                           ≤ K        1+ |v | + |u |  |v − u |
                                                       0
                                                           0
                                                 1         1
                                 0
                                µZ                     ¶3/4 µZ  1        ¶1/4
                                    1 ³             ´ 4/3
                                                 0 3
                                                                      0 4
                                           0 3
                                                                  0
                           ≤ K        1+ |v | + |u |            |v − u |
                                                                      1
                                                 1
                                   0                          0
                                               e
                               e
                           ≤ K ku 1 − vk W 1,4 ≤ K  .
                Since   is arbitrary we deduce the result, i.e. m =0.
                   ii) The argument is analogous to the preceding one and we skip the details.
                We first let
                                      ©     1                        ª
                               X   =   v ∈ C ([0, 1]) : v (0) = 1,v (1) = 0
                                      ©     1                          ª
                                   =   v ∈ C   ([0, 1]) : v (0) = 1,v (1) = 0
                            X piec
                                            piec
                                                      1
                where C 1  stands for the set of piecewise C functions. We have already proved
                       piec
                that
                                                     1
                                           ½       Z              ¾
                                                              2
                                                          0
                             (P piec )  inf  I (u)=    x (u (x)) dx  =0
                                     u∈X pie c
                                                    0
                We need to establish that m =0 where
                                                  1
                                        ½       Z               ¾
                                                           2
                               (P)   inf  I (u)=    x (u (x)) dx  = m
                                                       0
                                     u∈X
                                                  0
   195   196   197   198   199   200   201   202   203   204   205