Page 205 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 205

192                                            Solutions to the Exercises

                                                                                    y
                                                                                      z
                                                                                 x
                       In terms of the Hamiltonian, if we let u i =(x i ,y i ,z i ) ,ξ =(ξ ,ξ ,ξ ) and
                                                                                    i
                                                                                 i
                                                                           i
                                                                                      i
                                y
                             x
                                   z
                       v i =(v ,v ,v ),for i =1..., N,we find
                             i  i  i
                                                  (                               )
                                                     N ∙                ¸
                                                    X            1     2
                               H (t, u, v)=   sup       hv i ; ξ i − m i |ξ |  + U (t, u)
                                                            i         i
                                             ξ∈R 3N              2
                                                    i=1
                                              N    2
                                             X   |v i |
                                          =          + U (t, u) .
                                                 2m i
                                             i=1
                          ii) Note that along the trajectories we have v i = m i u , i.e.
                                                                        0
                                                                        i
                                                      y
                                            x
                                                                 z
                                                   0
                                           v = m i x ,v = m i y ,v = m i z i 0
                                                              0
                                                             i
                                            i
                                                   i
                                                                 i
                                                      i
                       and hence
                                                        N
                                                     1  X
                                                              0
                                          H (t, u, v)=    m i |u | + U (t, u) .
                                                              i
                                                     2
                                                       i=1
                       Exercise 2.4.3. Although the hypotheses of Theorem 2.10 are not satisfied in
                       the present context; the procedure is exactly the same and leads to the following
                       analysis. The Hamiltonian is
                                               ⎧   p                 2
                                               ⎨ − g (x, u) − v 2  if v ≤ g (x, u)
                                    H (x, u, v)=
                                               ⎩
                                                       +∞           otherwise.
                                                 2
                       We therefore have, provided v <g (x, u),that
                                           ⎧                 v
                                              0
                                           ⎪ u = H v = p
                                           ⎪                       2
                                           ⎪             g (x, u) − v
                                           ⎨
                                           ⎪             1
                                           ⎪                   g u
                                           ⎩ v = −H u =   p            .
                                              0
                                           ⎪
                                                         2  g (x, u) − v 2
                                                    0
                       We hence obtain that 2vv = g u u and thus
                                              0
                                        £  2             ¤ 0
                                         v (x) − g (x, u (x)) + g x (x, u (x)) = 0.
                       If g (x, u)= g (u),weget (c being a constant)
                                                 2
                                                v (x)= c + g (u (x)) .
   200   201   202   203   204   205   206   207   208   209   210