Page 203 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 203

190                                            Solutions to the Exercises

                       Setting

                                     A (β) − A (α)                           −1
                              v (x)=              (x − a)+ A (α) and u (x)= A  (v (x))
                                         b − a
                       we have from the preceding inequality

                                              ¯            ¯ p  Z  b
                                              ¯ A (β) − A (α) ¯         p
                                                                    0
                                 I (u) ≥ (b − a)  ¯        ¯  =   |v (x)| dx = I (u)
                                              ¯   b − a    ¯    a
                       as claimed.


                       7.2.2   Second form of the Euler-Lagrange equation
                                                 ¡         ¢
                                                             and start by the simple observation
                       Exercise 2.3.1. Write f ξ = f ξ 1  , ..., f ξ N
                                         ¡
                                                  ¢
                       that for any u ∈ C 2  [a, b]; R N
                                     d
                                               0
                                       [f (x, u, u ) − hu ; f ξ (x, u, u )i]
                                                     0
                                                               0
                                     dx
                                                 N    ∙                           ¸
                                                X                   d £          ¤
                                             0
                                 = f x (x, u, u )+  u 0   (x, u, u ) −    (x, u, u )  .
                                                                0
                                                                                0
                                                     i  f u i       dx  f ξ i
                                                i=1
                       Since the Euler-Lagrange system (see Exercise 2.2.1) is given by
                                       d £          ¤
                                                   0            0
                                             (x, u, u ) = f u i  (x, u, u ) ,i =1, ..., N
                                          f ξ i
                                      dx
                       we obtain
                                     d
                                                               0
                                                     0
                                                                            0
                                               0
                                       [f (x, u, u ) − hu ; f ξ (x, u, u )i]= f x (x, u, u ) .
                                     dx
                       Exercise 2.3.2. The second form of the Euler-Lagrange equation is
                                                                          ∙                 ¸
                              d                                         d          1       2
                       0=        [f (u (x) ,u (x)) − u (x) f ξ (u (x) ,u (x))] =  −u (x) −  (u (x))
                                                               0
                                                                                       0
                                                  0
                                          0
                              dx                                       dx          2
                          = −u (x) − u (x) u (x)= −u (x)[u (x)+ 1] ,
                                             0
                                0
                                       00
                                                           00
                                                      0
                       and it is satisfied by u ≡ 1.However u ≡ 1 does not verify the Euler-Lagrange
                       equation, which is in the present case
                                                     00
                                                    u (x)= −1 .
   198   199   200   201   202   203   204   205   206   207   208