Page 32 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 32

p
                L spaces                                                           19

                If 1 <p < ∞,we find

                                                                1
                                                 p
                                        → 0 in L   ⇐⇒ 0 ≤ α<
                                    u ν
                                                                p
                                                                1
                                                 p
                                          0 in L
                                    u ν            ⇐⇒ 0 ≤ α ≤
                                                                p
                (cf. Exercise 1.3.2).
                Example 1.18 Let Ω =(0, 2π) and u ν (x)= sin νx,then
                                                    p
                                   sin νx 9 0 in L , ∀ 1 ≤ p ≤∞
                                                    p
                                   sin νx   0 in L , ∀ 1 ≤ p< ∞
                and
                                                ∗
                                          sin νx   0 in L ∞  .
                These facts will be consequences of Riemann-Lebesgue Theorem (cf. Theorem
                1.22).

                Example 1.19 Let Ω =(0, 1), α, β ∈ R
                                           ⎧
                                           ⎨ α if x ∈ (0, 1/2)
                                     u (x)=
                                           ⎩
                                              β  if x ∈ (1/2, 1) .
                Extend u by periodicity from (0, 1) to R and define

                                           u ν (x)= u (νx) .

                Note that u ν takes only the values α and β and the sets where it takes such
                values are, both, sets of measure 1/2. It is clear that {u ν } cannot be compact in
                     p
                any L spaces; however from Riemann-Lebesgue Theorem (cf. Theorem 1.22),
                we will find
                               α + β                         ∗ α + β
                                        p
                         u ν        in L , ∀ 1 ≤ p< ∞ and u ν        in L .
                                                                         ∞
                                2                                2
                                        n
                Theorem 1.20 Let Ω ⊂ R be a bounded open set. The following properties
                then hold.
                           ∗                         p
                   (i) If u ν  u in L ,then u ν  u in L , ∀ 1 ≤ p< ∞.
                                   ∞
                                   p
                   (ii) If u ν → u in L ,then ku ν k L p → kuk L p, 1 ≤ p ≤∞.
   27   28   29   30   31   32   33   34   35   36   37