Page 37 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 37

24                                                        Preliminaries

                       Exercise 1.3.2 Establish the results in Example 1.17.

                       Exercise 1.3.3 (i) Prove that if 1 ≤ p< ∞,then
                                          u ν  u in L p  ⎫
                                                       ⎬
                                                                         1
                                                         ⇒ u ν v ν  uv in L .
                                          v ν → v in L p 0 ⎭
                       Find an example showing that the result is false if we replace v ν → v in L p 0  by
                                  p
                                  0
                       v ν  v in L .
                          (ii) Show that
                                                        ⎫
                                                      2
                                           u ν  u in L  ⎬
                                                                        2
                                                           ⇒ u ν → u in L .
                                            2
                                                 2
                                           u  u in L   1 ⎭
                                            ν
                       Exercise 1.3.4 (Mollifiers). Let ϕ ∈ C  ∞  (R), ϕ ≥ 0, ϕ (x)= 0 if |x| > 1 and
                                                           0
                       R
                        +∞
                            ϕ (x) dx =1,for example
                        −∞
                                               ⎧       ½      ¾
                                                           1
                                               ⎨ c exp   2        if |x| < 1
                                               ⎪
                                               ⎪
                                        ϕ (x)=          x − 1
                                               ⎪
                                               ⎪
                                               ⎩
                                                        0         otherwise
                                            R  +∞
                       and c is chosen so that  ϕdx =1.Define
                                             −∞
                                   ϕ (x)= νϕ (νx)
                                    ν
                                                          Z
                                                            +∞
                                   u ν (x)= (ϕ ∗ u)(x)=        ϕ (x − y) u (y) dy .
                                                ν                ν
                                                           −∞
                          (i) Show that if 1 ≤ p ≤∞ then
                                                  ku ν k L p ≤ kuk L p .
                                              p
                          (ii) Prove that if u ∈ L (R),then u ν ∈ C  ∞  (R).
                          (iii) Establish that if u ∈ C (R),then
                                      u ν → u uniformly on every compact set of R.
                                              p
                          (iv) Show that if u ∈ L (R) and if 1 ≤ p< ∞,then
                                                            p
                                                  u ν → u in L (R) .
                       Exercise 1.3.5 In Step 2 of Theorem 1.22 use approximation by smooth func-
                       tions instead of by step functions.
   32   33   34   35   36   37   38   39   40   41   42