Page 211 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 211

198                               Properties of Vibrating Systems   Chap. 6

                                                   ¡ 1 'c     • ~ ~T '         1 ’

                                                                  (a)










                                  Thus, the roots or the eigenvalues for the system are
                                                              Ai  = 0
                                                              A2 =  1


                                      To identify the corresponding eigenvectors, each  of the  A’s is substituted  into
                                  the equation of motion:
                                                 (1-A )    - 1     0
                                                   0     (2 -A )   -1
                                                   0       -1   (1-A )
                                  When  Aj  = 0  is  substituted,  the  result  is   = ^2 ^ ^3   normal  mode,  or
                                  eigenvector, is
                                                             *,  = |!



                                  which describes the rigid body motion [see Fig. 6.12-2(a)].
                                      Similarly, the second and  third modes [see Figs. 6.12-2(b) and 6.12-2(c), respec­
                                  tively] are found and displayed as
                                                             n         (   1
                                                     (t>2 '■=  0  <^3 =   - 2
                                                             1           1


                                                        P R O B LEM S

                              6-1  Determine the flexibility matrix for the spring-mass system shown in Fig. P6-1.



                                         «1                   3   ^

                                                          V7777777//,   Figure P6-1.
   206   207   208   209   210   211   212   213   214   215   216