Page 326 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 326

Sec.  10.4   Element Stiffness and  Element Mass in Global Coordinates  313












                                                                     Figure  10.4-1.
                                  related by the  following equation:
                                                                    i-  \
                                                           ^1,.'


                                                                     ^2
                                                              >=  [^]<

                                                                      '
                                                           Fly       T2
                                                           K
                                                           Fly
                                      The  global  stiffness  of  eaeh  element  is  determined  from  Eq.  (10.4-3)  by
                                  substituting  sin a  and cos a  for the  particular member.
                                      Element  a {\  to 2):

                                            4     3

                                                                16    12  1 -   16  -  12“
                                                                12     9  1 -  12  - 9  ^1
                                                      23
                                                              -   16  -  12  1  16  12
                                                               -12   - 9   1  12  9 \T'2)
                                      Element  b  (2 to 3):
                                           c‘  =  -  1, .V=  0

                                                                 1  0  1 1  -   1   0 “  ^112^
                                                                0   0 1 1  0   0  T'2
                                                  kh,^h ~            1 1       <
                                                               -   1  0 1  1   0  Tl2
                                                                     1
                                                              -  0  0 1  0   0 _
                                                                 12S    1    125
                                                                  4    0 1   4  o ]
                                                              \   0    0 1   0  0
                                                        25 m  /   12:   . L i   125
                                                                   4   0 1   ^  0
                                                                  0    0 1    0  0
   321   322   323   324   325   326   327   328   329   330   331