Page 330 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 330

Sec. 10.5   Vibrations Involving Beam Elements                 317


                                  These  6 x 6   element  matrices  are  transformed  to  global  coordinates  (with
                              bars over the  letters) by the  equations  ~k  =  T^kT  and  m  =  T^mT:

                                      (Rc^  +   U s ^ )  {R   -   \2)cs  - 6 / 5   1 { - R c -   -   12 5 2 )  ( - R   +   \2)cs  —()ls  u

                                      (R   -   \2)cs  (Rs~  +   1 2 c 2)  6 /r  i ~  R  +   12 ) c’5  i -R s^   -   1 2 C-2 )  6lc  r
                                        — 6 Is      6lc      4 /2    6/5        — 6 /c   2 /2  Ô
                                                                r
                                     ( - Rc^  -   Ì2s^)  ( - R   +   \2)cs  6/5   1  ( Rc “  -r  125*')  (R   -   1 2 )c5  6 Is

                                      ( — R  -f-  12 ) c\s’  ( - R s ^   -   \2 c")  — 6/c’  1  (R   -   1 2 )c5  (Rs^  +   12 c-2)  —61c
                                        — 6 Is      6lc      2 /2    1  6/5     — 6 /c   4 /2   _
                                                                                         ( 1 0 . 4 - 7 )
                                        (Nc^  +   15 6 5 2 )  { N   — 1 5 6 ) c5  - 22/5  (^A^c 2  +   54 52)  { \ N   -   5 4 ) c5  13/5


                                        (N   — 1 5 6 ) c5  (Ns^  +   1 5 6 c 2)  22 Ic  ( { N   -   54)cs  C N 52  +   5 4 c 2 )  -   13/c
                                    ml    - 2 2 / 5  22 Ic    4 /2    1  - 13/5  13/c   - 3 / 2
                                    4 2 0  ({N c^  +   54s^)  { \ N   -   5 4 ) c5  -   13/5    1 (Nc^  +   1 5 6 5 2 )  (N   -   1 5 6 ) c5  22 Is
                                        ( \ N   -   5 4 ) c5  ( { N s ^  +   5 4 c 2 )  13/c  1    (iV   -   1 5 6 ) c5  (Ns^  +   1 5 6 c 2)  -221c
                                           13/5      - 1 3 / c  - 3 / 2    1  22/5  - 2 2  k  4 /2
                                                                                         (10.4-8)




                       10.5  VIBRATIONS INVOLVING  BEAM  ELEMENTS

                              To  illustrate  the  finite  element  method  for  beams,  we  consider  some  problems
                              solved  in  Chapters 6  and  7.  The  object  here  is,  first,  to  show how to  assemble  the
                              system equation using two elements and, second, to reduce the degrees of freedom
                              of the  equation by elimination of rotational  coordinates.
                              Example  10.5-1
                                  The  beam  in  Fig.  10.5-1  is  considered  as  two  equal  elements  of  length  1/2,  whose
                                  stiffness  and  mass  matrices  are  given  by  Eqs.  (10.2-1)  and  (10.2-10).  With  1/2
                                  substituted for  /,  the  element  matrices  are  as follows:
                                       Element  a:

                                                   12   3/  1 -12  31
                                     Stiffness  3  3/      1 -31  0.5/2   Displacement vector  < r '
                                                                                         \ i'2
                                                ] -12  -3 /  1 12  - 3/
                                                   3/  0.5/2  1 -31  /2                  / 2J
                                                156    11/   '  54  -6.5/
                                         j'  m/  11/    /2   1 6.5/  -0.751^
                                     Mass
                                          840  ;  54   6.5/   ; 156  -11/
                                               -6.5/  -0.75/2  1 -11/  /  2
   325   326   327   328   329   330   331   332   333   334   335