Page 335 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 335

322                      Introduction to the Finite Element Method   Chap. 10

                                    Assembling these  matrices, we  have
                                     (12  + R)    0       61  \   ~R          0        0" Ml
                                         0     (12  + R)  61  \     0       -12        61
                                 El     6/       61       8/2  1    0       -61       11"
                                                                                             (a)
                                 /■’   -  R       0       0  1   (12  + R)    0        61 Ü2
                                         0      -12     -6 /  1     0      (12  + R)  -61  ^2
                                         0        61      2/2  !   61       -61       8/2 _ Ô2
                                         ~(156  + N)   0    22/  1    \N         0       o '
                                               0      156   22/  1     0        54     -13/
                                      ml      111     22/   8/2  ! 1    0       13/    -11 r2
                                      42Ô              0     0  1  (156  + N)    0      111  (b)
                                               0      54    13/  1     0    (156  + N)  -111
                                                               1
                                               0      13/  -3/2  !    111     -111      SI r2
                                  We  next  note  that  r,  =  ¿s  =  0,  which  eliminates  columns  2  and  5  as well  as  rows  2
                                  and  5.  The  equation  for free vibration with  N =  140 substituted  then  becomes
                                              "296    22/  1  70   0 “
                                           ^ml  111   8/2  1 1  0  -3/2  /  ë,
                                          420
                                                IQ      0 T  296  111  ^2
                                                          1
                                                 0   -3/2  1 111  8/2_  < ^2,
                                                 ■(12  +  /?)  61  1         o'  M l   'o'
                                              El      6/   8/2     !     0   2/2        0

                                            -|- —r-              1              <  > =  <    (c)
                                              /2     -R      0     (12  +  /?)  61  M2  0
                                                       0   2/2   1      6/  8/2_  k ^2 ^  .0.
                              Example  10.5-4
                                  Figure  10.5-4 shows the lowest antisymmetric and the lowest symmetric modes of free
                                  vibration  for  the  portal  frame.  Determine  the  natural  frequencies  for  the  given
                                  modes.












                                                         Figure 10.5-4.
   330   331   332   333   334   335   336   337   338   339   340