Page 327 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 327

314                      Introduction to the Finite Element Method   Chap. 10

                                      Element  c  (3  to  1):
                                          c  = 0,s  =  -1
                                                               "0   0  1 0   0
                                                                      1

                                                         i SEA \   0  1 1 0  -1  L'-
                                                                      1

                                                      ^ “  I  3/  )  0  0  1 0  0
                                                                      1         ^1
                                                               _0  -1   1 0  1J  v r , ;
                                                                ” 0   0   i  0  0
                                                                      12S  1    125

                                                       _  1 ( EA   0   ^   1 0  3

                                                       ~  25 [  I       J
                                                                 0    0   1 0  0
                                                                      125  1   125  1
                                                                _ 0    r   1 0  3 IrJ
                                  These  must  now  be  assembled  for  the  6 x 6   stiffness  equation.  The  matrices
                              for  a  and  b  have  a  common  displacement   is  easily  seen  that  they  fit
                              together with  an  overlap  of the  section  associated  with  the  common  displacement:
                                             r       12    -1 6   ■] -1 2
                                             1 12     9    -1 2    I - 9

                                        EA   |- 1 6  -1 2  ;  16  +  ^   ;  12  125  0  2
                                                                           4
                                        251  !_- 12  - 9  !   12   _l  9  0   0     2
                                                        1    125         125
                                                        1    4     0      4   0
                                                        1    0     0      0   0
                                  In  order  to  find  the  proper  location  for   it  can  be  separated  into  four
                              2 x 2   matrices,  which  can  be  arranged  as
                                                  ” 0   0    !     1 0  0

                                                                         125
                                                   0   ¥     i     1 0   3

                                                                   1
                                                           T       r
                                              EA            1      1
                                                                             <
                                              25/           1      1
                                                           4-      u
                                                   0    0   1        1 0  0   ^3
                                                        125   1         125
                                                   0               1  0  3
                                                       “ “     1   1
                              Superimposing these  three  matrices, we  see  that  the  stiffness matrix for the  truss  is
                                i E             16    12    1  -1 6   -  12 1 1  0    0   'u^
                                                            1
                                 ^Ix
                                                            1              1
                                                12   9  +  ^  1  -1 2  - 9  1 1  0     125
                                                                                       3
                                                            1
                                                           . J_           .A
                                                            1              1   125
                                 E             -   16  -1 2  1 16  +   12  1 1  4    0     Ul
                                                            1
                                     1  U s / j             1              1              <
                                 K             -1 2   - 9   1  12      9   1 1  0    0     V2
                                                            1


                                                           - H-  125      ■-1 -
                                                            1
                                                                           1 125
                                 E              0      0    1   4      0   1 1  4    0
                                                            1
                                                       125  1              1         125
                                                0       3   1  0       0   1  0       3    ^3
                                                            1              1              1
   322   323   324   325   326   327   328   329   330   331   332