Page 495 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 495

482                                      Nonlinear Vibrations   Chap. 14

                               [2]  Brock,  J.  E.  “An  Iterative  Numerical  Method  for  Nonlinear  Vibrations,”  J.  Appl.
                                  Mech. (March  1951), pp.  1-11.
                               [3]  Butenin,  N. V.  Elements of the Theory of Nonlinear Oscillations. New York: Blaisdell
                                   Publishing Co.,  1965.
                               [4]  Cunningham,  W.  J.  Introduction  to  Nonlinear Analysis.  New  York:  McGraw-Hill
                                   Book Company,  1958.
                               [5]  Davis,  H.  T.  Introduction to Nonlinear Dijferential and Integral Equations.  Washing­
                                   ton,  D.C.:  U.S.  Government  Printing Office,  1956.
                               [6]  Duffing,  G.  Erwugene Schwingungen bei veränderlicher Eigenfrequenz. Braunschweig:
                                   F.  Vieweg u.  Sohn,  1918.
                               [7]  Hayashi,  C.  Forced Oscillations in Nonlinear Systems.  Osaka, Japan:  Nippon Printing
                                   &  Publishing Co.,  1953.
                               [8]  Malkin,  I.  G.  Some Problems in the Theory of Nonlinear Oscillations, Books  I and  II.
                                   Washington,  D.C.:  Department of Commerce,  1959.
                               [9]  Minorsky,  N.  Nonlinear Oscillations.  Princeton:  D.  Van  Nostrand Co.,  1962.
                              [10]  Rauscher,  M.  “Steady  Oscillations  of  Systems  with  Nonlinear  and  Unsymmetrical
                                   Elasticity,” J.  Appl.  Mech. (December  1938), pp.  A169-A177.
                              [11]  Stoker,  J. J.  Nonlinear Vibrations.  New York:  Interscience  Publishers,  1950.


                                                         P R O B L E M S


                              14-1  Using the nonlinear equation
                                                             jc  +  0
                                   show  that  if  JCj  and  X2  are  solutions  satisfying  the  differential  equation,  their
                                   superposition (xj  + X2) is not  a solution.
                              14-2  A mass  is  attached  to  the  midpoint  of a  string  of length  2/,  as  shown  in  Fig.  P14-2.
                                   Determine  the  differential  equation  of  motion  for  large  deflection.  Assume  string
                                   tension to be  T.












                                                                     Figure P14-2.

                              14-3  A  buoy  is  composed  of  two  cones  of  diameter  2r  and  height  h,  as  shown  in  Fig.
                                   PI4-3.  A weight  attached  to  the bottom  allows  it  to  float  in  the  equilibrium  position
   490   491   492   493   494   495   496   497   498   499   500