Page 240 - Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors
P. 240
Subchannel analysis for LMR 211
Rehme, K., 1992. The structure of turbulence in rod bundles and the implications on natural
mixing between the subchannels, Int. J. Heat Mass Transf., Vol. 35, No. 2, pp.
567–581, 1992.
Shen, D.H., Liu, X.J., Cheng, X., 2015. Development of turbulent mixing model for Sub-
Channel analysis. In: 7th China-Korea Workshop on Nuclear Reactor Thermal-Hydraulics,
WORTH-7, Kunming, Yunnan, China, October 14–17, 2015.
Skupinski, E., Tortel, J., Vautrey, L., 1965. Determination des Coefficients de Convection D’un
Alliage Sodium-Potassium Dans un Tube Circulaire. Int. J. Heat Mass Transf. 8, 937–951.
Sleicher, C.A., Awad, A.S., Notter, R.H., 1973. Temperature and eddy diffusivity profiles in
NaK. Int. J. Heat Mass Transf. 16, 1565–1575.
Todreas, N., Kazimi, M.S., 2012. Nuclear Systems, Vol. 1: Thermal-Hydraulics Fundamental,
second ed. CRC Press.
Wang, X., Cheng, X., 2017. A study on inter-channel sweeping flow in wire wrapped 19-rod
bundle for SFR. In: Annual Meeting on Nuclear Engineering, May 16–17, 2017, Berlin,
Germany.
Wantland, J.L., 1974. Orrible – A computer program for flow and temperature distribution in
19-rod LMFBR fuel subassemblies. Nucl. Technol. 24, 168–175.
Yang, T., Liu, X.J., Cheng, X., 2013. Investigation on heat transfer non-uniformity in rod bun-
dle. Nucl. Eng. Des. 265, 222–231.
Yu, Y.Q., Cheng, X., 2012. Simulation of turbulent flow inside different subchannels in tight
lattice bundle. Nucl. Sci. Technol. (in Chinese) 46 (04), 396–403.
Further reading
Kirillov, P.L., 2007. Thermal-Physical Properties of Materials for Nuclear Engineering.
Moscow, 2007 ISBN 978-5-86656-207-7.
Rehme, K., 1972. Pressure drop performance of rod bundles in hexagonal arrangement. Int. J.
Heat Mass Transf. 15 (2499), 1972.