Page 301 - Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors
P. 301
Large-eddy simulation: Application to liquid metal fluid flow and heat transfer 271
Kays, W.M., Crawford, M.E., 1993. Convective Heat and Mass Transfer, third McGraw-Hill,
New York, NY.
Kolmogorov, A.N., 1941. The local structure of turbulence in incompressible viscous fluid for
very large Reynolds number. Dokl. Akad. Nauk. SSR 30, 299–303.
Lee, M.J., Oh, B.D., Kim, Y.B., 2001. Canonical fractional-step methods and consistent bound-
ary conditions for the incompressible Navier-Stokes equations. J. Comput. Phys.
168, 73–100.
Leonard, A., 1974. Energy cascade in large-eddy simulation of turbulent fluid flows. Ad.
Geophys. 18A, 237.
Li, D., 2016. Revisiting the subgrid-scale Prandtl number for large-eddy simulation. J. Fluid
Mech. 802(11). https://doi.org/10.1017/jfm.2016.472.
Lilly, D.K., 1992. A proposed modification of the Germano subgrid-scale closure method. Phys.
Fluids A4 (3), 633–635.
Lily, D.K., 1967. The representation of small scale turbulence in numerical simulation exper-
iments. In: Proceedings of IBM Scientific Computing Symposium on Environmental Sci-
ences. Yorktown Heights, New York, pp. 195–210.
Moin, P., Squires, K., Cabot, W., Lee, S., 1991. A dynamic subgrid-scale model for compress-
ible turbulence and scalar transport. Phys. fluid A3 (11), 2746–2757.
Moser, R.D., Kim, J., Mansour, N.N., 1999. Direct numerical simulation of turbulent channel
flow up to Re τ ¼ 590. Phys. Fluids 11 (4), 943–945.
Nicoud, F., Ducros, F., 1999. Subgrid-scale stress modelling based on square of velocity gra-
dient. Flow Turbul. Combust. 62, 183–200.
Piomelli, U., Zang, T.A., Speziale, C.G., Hussaini, M.Y., 1993. On the large-eddy simulation of
transitional wall-bounded flows. Phys. Fluids A2 (2), 257–265.
Pope, S.B., 2000. Turbulent Flows. Cambridge University Press, Cambridge.
Sagaut, P., 2006. Large Eddy Simulation for Incompressible Flows. Springer, Berlin.
Smagorinsky, J., 1963. General circulation experiments with primitive equations. Mon.
Weather Rev. 91 (3), 99–164.
Thiry, O., Winckelmans, G., 2016. A mixed multiscale model better accounting for the cross
term of the subgrid-scale stress tensor and for backscatter. Phys. Fluids 28 (2), 025111.
Tiselj, I., 2011. DNS of turbulent channel flow at Re τ ¼ 395, 590 and Pr ¼ 0.01. In: The 14th
International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH-14.
Vasilyev, O.V., 2000. High order finite difference schemes on non-uniform meshes with good
conservation properties. J. Comput. Phys. 157 (2), 746–761.
Wong, V., Lilly, D.K., 1991. A comparison of two subgrid closure methods for turbulent ther-
mal convection. Phys. Fluid 6 (2), 1017–1023.
Yang, K.S., Ferziger, J.H., 1993. Large-eddy simulation of turbulent obstacle flow using a
dynamic subgrid-scale model. AIAA J. 31 (8), 1406–1413.
Yeo, W., 1987. A Generalized High Pass/Low Pass Filtering Procedure for Deriving and Solv-
ing Turbulent Flow Equations (Ph.D. thesis). Ohio State University.
Zang, Y., Street, R.L., Koseff, J.R., 1993. A dynamic mixed subgrid-scale model and its appli-
cation to turbulent recirculating flows. Phys. Fluids A5 (12), 3186–3196.