Page 224 - Thermodynamics of Biochemical Reactions
P. 224

224     Mathematica Solutions to rronlems




                coA2 = calcdGmat[coA2sp];
        Now the data entry for acetylcoA can be calculated from the apparent equilibrium constant (10.8) of  this reaction at pH 7.12
        and ionic strength 0.05 M.

                acetylcoAsp2 = CalCGeflSp[
                  citrate+coA2+nadred-malate-x-nadox-h20== -8.314510.29815Log[10.8],  7.12, 0.05, 0,

                {{-188.523, -,  0, 3))

                acetylcoA2 = calcdGmat[acetylcoAsp2];
        This calculation can be verified  by  using  the data on coA and acetylcoA to calculate the apparent equilibrium constant for
        this reaction at the experimental conditions.

                calckprime[malate+acetylcoA2 +nadox+h2o+de == citrate+coA2 +nadred, 7.12, 0.051

                10.8


        m 9.7  Calculation of the thermodynamic properties of a biochemical reaction


        It is convenient to be  able to calculate  the standard transformed reaction  Gibbs energy, apparent equilibrium  constant, and
        change in binding of  hydrogen ions in a biochemical reaction at a series of pHs and ionic strengths.  The pH dependencies of
        the standard  transformed  reaction  Gibbs  energies  and IS can bt  regarded  as a consequence of the change in binding  of
        hydrogen ions.

                calcNHrx[ee, pHlist-,  islist-]  :=  Module {energy),(*This program calculates the
                change in the binding of hydrogen ions in a biochemical reaaction at specified ~HS and
                ionic strengths.*)
                   energy =  Solve[eq, del ;
                    D [energy [ [ 1,1,2 1 I , pH]/ (8.31451*0.29815*Log I101 )  / .
                      p~  ->  pHlist /. is ->  islist]

                rxthermotab[ee, pHlist-,  islist-] :=  Module[{energy, tg, tk, tn),
                  (*This program uses three other programs to make a thermodynamic table of
                    standard transformed reaction Gibbs energies, apparent equilibrium constants,
                   and changes in the number of hydrogen ions bound in a biochemical reaction.*)
                  tg  = calctrGerx[eq, pHlist, islist]; tk= calckprirne[eq, pHlist, islist];
                  tn  = calcNHrx[eq, pHlist, islist]; TableForm[Join[{tg, tk, tn)]]]

                rxthermotab[pep  + adp + de == pyruvate + atp, {5, 6, 7, 8, 9),  {0, 0.1,  0.25}]

                -33.4613       -32.7661   -30.6224    -25.1722    -19.2526
                -34.1841       -33.1449   -29.2617    -23.6955    -17.993
                -34.4724       -33.1063   -28.8451    -23.2908    -17.5968
                728017.        549974.    231625.     25700.8     2359.9
                914465.        640772.    133784.     14166.3     1419.79
                          6
                1.09465 10     630867.    113085.     12032.5     1210.04

                0.150557       0.151752   0.700597    1.06297     1.01353
                0.0719355      0.38045    0.915575    0.99698     0.999809
                0.0826948      0.480624   0.927296    0.993667    0.999384
        The first row gives the standard transformed  reaction  Gibbs energies in kJ mol-l  at zero ionic strength, the second row at
        0.10 M ionic strength, and the third at 0.25 M ionic strength.  The second part of the tsable is made up of  apparent equilib-
   219   220   221   222   223   224   225   226   227   228   229