Page 223 - Thermodynamics of Biochemical Reactions
P. 223

BasicBiochemData2    223


                calcGeflsplequat-,  ~Hc-, ionstr-,  21-,  nH1-1  :=
                   Module[{energy, trGereactant),(*This program uses CviAfGiIO=-RTlnK' to calculate the
                 standard Gibba energy of formation of the species of a reactant that does not have a
                pK in the range 4  to 10. The equation is of the form pyruvate+atp-x-
                adp==-8.31451*.29815*Log[K11, where K'  is the apparent equilibrium constant at  298.15
                K, pHc, and ionic strength is.  The reactant has charge number zl and hydrogen atom
                number nH1.  The output is the species vector without the standard enthalpy of
                 formation.  *)
                    energy =  Solve[equat, x] /. pH  ->  pHc /. is ->  ionstr;
                     trGereactant =  energy[[l,l,Z]l;
                     gefl =  trGereactant -  nH1*8.31451*0.29815*Log[lO]*pHc  +
                       (2.91482*(zlA2 -  nH1)*ionstrA0.5)/
                        (1 +  1.6*ionstrA0.5); {{gefl, -, zl, nH1})1

                 calcGefZsgCequat-,  pHc-,  ionstr-,  21-,  nHl-,  pKO-1  :=
                   Module[(energy,  trGereactant, pKe,  trgefpHiS,gefl,  gefZ},(*This  program uses Evils.
                 fGi'O=-RTlnK' to calculate the standard Gibbs energies of formation of the two species
                 of a reactant for which the pK at  zero ionic strength is pKO. The equation is of the
                 form pyruvate+atp-x-adp==-8.31451*.29815*LogIK11, where K' is the apparent equilibrium
                 constant at 298.15  K,  pHc,  and ionic strength is.  The more basic  form of the reactant
                has charge number zl and hydrogen atom number nH1.  The output is the species matrix
                 without the standard enthalpies of formation.*)
                  energy =  SolveCequat, XI  /. pH ->  pHc /. is ->  ionstr;
                     trGereactant =  energyl[l,l,Z]l;
                     pKe =  pKO +  (0.510651*ionstrA0.5*2*zl)/
                        (1 +  1.6*ionstrA0.5); trgefpHis =
                      trGereactant +  8.31451*0.29815*Log[l  +  10A(pKe -  pHc)];
                     gefl =  trgefpHis -  nH1*8.31451*0.29815*Log[lOl*pHc  +
                       (2.91482*(zlA2 -  nH1)*ionstrA0.5)/
                        (1  +  1.6*ionstrA0.5);
                     gef2 =  gefl +  8.31451*0.29815*L0gIlO~~-pK0)1;
                     ({gefl, _, zl, nHl1,  Cgef2, _, zl +  1,  nH1 +  1111

                 calcGef3sp[equat-,  pHc-,  ionstr-,  zl-,  nHl-,  pKlO-,
                    pK20-1  :=  Module[{energy, trGereactant, pKe,  trgefpHis,
                     gefl, gef2, gef3, pKle, pKZe},(*This program uses xviAfGitO=-RTlnK1 to calculate
                 the standard Gibbs energies of formation of the three Species of a reactant for which
                 the pKs at zero ionic strength is pKlO and pK20. The equation is of the form
                 gyruvate+atp-x-adp==-8.31451*.29815*Log[K'], where K' is the apparent equilibrium
                 constant at 298.15  K,  ~Hc, and ionic strength is.  The more basic  form of the reactant
                 has charge number zl and hydrogen atom number nH1.  The output is the species matrix
                 without the standard enthalpies of formation of the three species.*)
                    energy =  Solvelequat, x] /. pH ->  pHc /. is ->  ionstr;
                     trGereactant =  energy"l,l,2]1;
                     pKle =  pKlO +  (0.510651*ionstrA0.5*2*zl~/
                         (I +  1.6*ionstrA0.5);
                     pK2e =  pK20 +  (0.510651*ionstrA0.5*(2*zl +  2))/
                         (1  +  1.6*ionstrA0.5); trgefpHis =
                      trGereactant +  8.31451*0.29815*
                        LOg[l +  10"(pKle -  pHC) +  10"(pKle +  pK2e -  2*pHc)l;
                     gefl =  trgefpHis -  nH1*8.31451*0.29815*Log[lOl*pHc  +
                        (2.91482*(zlA2 -  nH1)*ionstrA0.5)/
                         (1 +  1.6*ionstrA0.5);
                     gef2 =  gefl +  8.31451*0.29815*L0g[10"(-pK10)1:
                     gef3 =  gef2 +  8.31151*0.29815*L0gClO~~-pK20~1;
                     {{gefl, _, zl, nH1).  {gef2, -, zl +  1, nH1 +  11,
                      (gef3, -, zl +  2,  nH1 +  2111
          The following example is concerned with biochemical  reaction EC  1.1.1.37.  If the standard Gibbs energies of formation of
          both coA and acetyl coA are unknown, the convention can be adopted that the standard Gibbs energy of formation of  RS-  is
          zero.  The standard Gibbs energy of formatin of RSH can be calculated using the pK at zero ionic strength.
   218   219   220   221   222   223   224   225   226   227   228