Page 269 - Thermodynamics of Biochemical Reactions
P. 269

Chemical Equilibrium in One Phase Systems   269



                {I-2768.1, -3619.21, -4, 12}, {-2811.48, -3612.91, -3, 13}, I-2838.18, -3627.91, -2, 141

        This program is run three times at I = 0, 0.10, and 0.25 M.

                Tab1eFo~~ca1cdGTsptat~sp,~283.15,298.15,1eHeadings-
                > { { "ATP-4 'I, "HATP-3" "H2ATP-2" 1, { "28 3.15  K" , "298.15  K" , "3 13.15  K" 1 } ]
                                    I
                          283.15 K    298.15 K    313.15 K
                ATP-4     -2810.92    -2768.1     -2725.28
                HATP-3    -2851.8     -2811.48  -2771.16
                H2ATP-2   -2877.91    -2838.18  -2798.45

                Tab1eFormtca1cdGTs~tatpsp,(283.15,298.151eHead~ngs-
                >{ { "ATP-4 " I "HATP- 3", "H2ATP-2" 1, E "2 83.15  K" , "298.15  K" , "313.15 K" 1 1 I

                          283.15 K    298.15 K    313.15 K
                ATP-4     -2819.99    -2777.89    -2735.84
                HATP-3    -2856.9     -2816.99    -2777.1
                H2ATP-2  -2880.18     -2840.63    -2801.09

                TableFormlcalcdGTsp[atps~,{283.15,298.15,313.15},.25],~TableHeadings-
                > { { "ATP-4 'I,  "HATP- 3 " , "H2ATP-2 " 1 , "2 83 -15 K" , "298.15  K" , "313.15  K" 1 } I
                                                 {
                          283.15 K    298.15 K    313.15 K
                ATP- 4    -2822.92    -2781.06    -2739.25

                HATP-3    -2858.55    -2818.77    -2779.02
                H2ATP-2   -2880.91    -2841.42    -2801.94
        3.7  Calculate the adjustments to be subtracted from pH,  obtained with  a pH meter to obtain pH,=  -log[H'  at 0 "C to 40 "C
        and ionic strengths of 0,O. 10, and 0.25 M.

        The values of o in the Debye-Huckel equation are given by

                data={{273.15,1.12938),{283.15,1.14717},{293.15,1.16598},{298.15,1.17582~,~303.15,1.185
                99),{313.15,1.20732)}

                {{273.15, 1.12938}, {283.15, 1.14717}, (293.15, 1.16598}, {298.15, 1.175821,
                  {303.15, 1.18599}, {313.15, 1.20732))

                TableForm[datal
                273.15    1.12938
                283.15  1.14717
                293.15    1.16598
                298.15    1.17582
                303.15    1.18599
                313.15    1.20732

                alpha=Fit [data, (1, t, t "2 } , t]
                                                     -6  2
                1.10708  -  0.00154508 t  +  5.95584 10   t

                alpha
                                                     -6  2
                1.10708  -  0.00154508 t +  5.95584 10   t
   264   265   266   267   268   269   270   271   272   273   274