Page 382 - Thermodynamics of Biochemical Reactions
P. 382
382 Mathematica Solutions to Problems
Now calculate the further transformed Gibbs energies of formation of these reactants at the specified concentrations of ATP
and ADP
gppglucose6phos=gpglucose6phos-
(~pat~+8.31451*.29815*Log[.0001~)+(~adp+8.31451*.29815*Log~.011~
-449.906
gppfructose6phos=ggfructose6~hos-
(~atg+8.31451*.29815*Log[.0001])+(~adg+8.31451*.29815*Log~.~11~
-446.611
gpgfructose16phos=ggfructosel6ghose16phos-2*(g~at~+8.31451*.29815*Log[.00011)+2*~gpadp+8.31451
*.29815*Log[.O11)
-452.647
(b) Calculate the further transformed Gibbs energy of formation of the speudoisomer group
calciso CtransG-l : =
Module[{},(*This program produces the function of pH and ionic strength that gives
the standard transformed Gibbs energy of formation of a
pseudoisomer group at 298.15 K. The input is a list of the names of the functions for
the pseudoisomers in the groups. Energies are expressed in kJ molA-l.*)
-8.31451*.29815*
Log[Apply[Plus, ExpC-1*transG/(8.31451*.29815)11]1
gppiso=calc~so[~ggpglucose6phos,gpgfructctosel6phoS~~
-453.514
(c) Calculate the equilibrium mole fractions
r~=Exp[(g~~iso-{ggpg1ucose6phos,gppf~ctose6pho6,gppf~cto6e16phos})/(8.31451*.29815~1
{O .233262, 0.061748, 0.704991
(d) Now increase the ATP steady state concentration by a factor of 100
gppglucose6phos=gpglucose6phos-
(gpat~+8.31451*.29815*Log[.01l)+(ggadg+8.31451*.29815*Log~.011~
-461.322
gppfructose6phos=gpfructose6phos-
(ggatp+8.31451*.29815*Log[.Oll)+(gpadg+8.31451*.29815*Log[.Ol~
-458.027
gppfructose16phos=gpf~ctose16phos-2*(ggatp+8.31451*.29815*Log1.011~+2*~~~ad~+8.31~~1*.
29815*Log I. 011 1
-475.48
-475.49