Page 384 - Thermodynamics of Biochemical Reactions
P. 384

384      Mathematica Solutions to Problem



                 -0.403393  (-461.322  +  2.47897  LoglADP]  -  2.47897  Log[ATP])
                E                                                               +
                   -0.403393  (-458.027  +  2.47897  Log[ADP]  -  2.47897  LOg[ATPI)
                  E                                                               t
                  Power[E,  -0.403393  (-2202.84  +  2  (-1428.93  +  2.47897  Log[ADPI)  -
                      2  (-2292.61  +  2.47897  Log[ATPI))I

                TraditionalForm[gal

                e  -0.403393  (2.47897 log(ADP)-2.47897  log(ATP)-46 1.322) +
                  b?  -0.403393 (2.47897 log(ADP)-2.47897 log(ATP)-4.58.027)  +
                  a?  -0.403393 (2 (2.47897 log(ADP)- 1428.93)-2 (2.47897 log(ATP)-2292.61)-2202.84)

         Note that the first Exp and Log in gamma cancel so that the same result is obtained with







                (gpfructosel6phos-2* (ggatp+8.31451* .29815*Log[ATP] )+2* (gpadp+8.31451* .29815*Log[ADPl) /
                (8.31451*.29815)1
                 -0.403393  (-461.322  +  2.47897  LoglADP]  -  2.47897  LOg[ATPI)
                E
                   -0.403393  (-458.027  +  2.47897  Log[ADP]  -  2.47897  LOg[ATPI)
                  E
                  Power[E,  -0.403393  (-2202.84  +  2  (-1428.93  +  2.47897  LogLADPI)  -
                      2  (-2292.61  +  2.47897  Log [ATPI ) ) 1

                                       1
                TraditionalForm [gamma2
                e  -0.403393 (2.47897 log(ADP)-2.47897  log(ATP)-461.322)  +
                  b?  -0.403393 (2.47897 10g(ADP)-2.47897 log(ATP)-458.027)  +
                   -0.403393  (2 (2.47897 log(ADP)- 1428.93)-2 (2.47897 Iog(ATP)-2292.61)-2202.84)
                  &?
         (c)  The fundamental equation for G" shows that the amount of ATP bound by the pseudoisomer  group is given by
         nc(ATP) = 2lnF/2ln[ATP]
         at constant  [ADP].  There is a corresponding equation for ADP.


                boundATP=D [Log [gamma2], Log [ATPI I
                                               1.
                 E
                (  0.403393  (-461.322  +  2.47897  Log[ADP]  -  2.47897  LOg[ATP])  +
                                                  1.
                     0.403393  (-458.027  +  2.47897  Log[ADPl  -  2.47897  LoglATP])  '
                    E
                    2.  /  PowerrE,  0.403393  (-2202.84  +  2  (-1428.93  +  2.47897  Log[ADPI)  -
                         2  (-2292.61  +  2.47897  Log[ATPI))I)  /
                    -0.403393  (-461.322  +  2.47897  LOglADPI  -  2.47897  LOg[ATPI)
                  (E                                                               '
                     -0.403393  (-458.027  +  2.47897  Log[ADP]  -  2.47897  LOg[ATPI)
                    E                                                               +
                    PowerLE,  -0.403393  (-2202.84  +  2  (-1428.93  +  2.47897  Log[ADP])  -
                        2  (-2292.61  +  2.47897  Log[ATP]))I)
   379   380   381   382   383   384   385   386   387   388   389