Page 229 - Bird R.B. Transport phenomena
P. 229

§7.6  Use  of the Macroscopic Balances  for  Steady-State Problems  213

                     The x-component of the momentum balance then gives
                                       F x  =  (viWi  + piSJ  -  {v w 2  + p S )  cos в  (7.6-22)
                                                         2
                                                              2 2
                 where  F  is  the x-component  of  Fy_». Introducing the  specific  expressions  for  w  and  w ,  we
                        x                     s                                  x     2
                 get
                                 F  =  Viipv^)  -  v (pv S )  cos  в  + p S -  p S  cos  в
                                  x           2  2  2       x x   2 2
                                   =  pvlS (f3  -  cos  6) +  (pi  -  p )S  + f? (Si  -  S  cos  в)  (7.6-23)
                                       2                  2  l  2     2
                 Substituting into this the expression  for  p  -  p  from  Eq. 7.6-21 gives
                                                  x   2
                                                          2
                                     F x  = pv S (p  -  cos  0) + pv S p-\l Q  -  i(3 )
                                                                     2
                                          2
                                            2
                                           2
                                                            2
                                                          2
                                                          p
                                         +  pg(h 2  -  /z )S /3" 1  + S ((3-'  -  cos  61)
                                                          2 2
                                                  1
                                                    2
                                          2
                                       =  w (pS y\j5p- 1  -  cos  в  +  lp)
                                             2
                                                       1
                                         +  pg№  -  /z )S )S-  + pzSzCiS" 1  -  cos  в)  (7.6-24)
                                              2   1  2
                     The y-component of the momentum balance  is
                                                  p
                                      F y  =  -{v w 2  + S )  sin 9  -  m g           (7.6-25)
                                            2
                                                             tot
                                                   2 2
                 or
                                           2
                                                                    2
                                     F y  =  -w (pS Y l  sin в  -  p S 2  sin в  -  irR Lpg  (7.6-26)
                                                         2
                                              2
                 in which  R and L are the radius and length  of  a roughly  equivalent  cylinder.
                     We  now  have the components of the reaction force  in terms  of known quantities. The nu-
                 merical values  needed  are
                      р = 60  lb /ft 3                  s 2  = 6 4 ^  = 0.049  ft 2
                              w
                                                                      2
                                                                    2
                      w  =  (2.0X60)  =  120  Ibjs      p = Si/Si ~- = 3 /4  = 0.562
                       cos в = \                        R~ 1ft
                       sin в = \Vb                      L « Ift
                      p  =  16.2  lb/in.  2             /z -     ft
                       2                                  2
                 With  these values  we  then get
                                 (120)  2  /  7  1  1 l  0.562\         f  1
                           x  2(0.049)(32.2)  V10 0.562  :>  2  ;  +  (60)(i)(0.049)( .0.562
                                             /  1  _  1
                                             \0.562  2
                            =  (152X1.24  -  0.50  +  0.28)  + 2.6  +  (144X1.78 -  0.50)
                            =  155  + 2.6  +  146  = 304 Vo =  1352N                  (7.6-27)
                                                  f
                                  Ш э      ( И   -  «6.2)(0.049)(144)(lV3)  -
                            =  -  132  -  99  -  2.5  = 234 \h f  -  1041 N           (7.6-28)
                 Hence the magnitude  of the force  is
                                  | F |  = У/ЩТЦ  = V304  2  + 234 2  = 384 Ц  =  1708 N  (7.6-29)
                 The angle that this force makes with the vertical  is
                                        a  = arctan(F /F ) = arctan  1.30  = 52°      (7.6-30)
                                                  x  ]/
                 In  looking  back  over  the calculation, we  see  that all  the  effects  we  have  included  are  impor-
                 tant, with  the possible  exception  of the gravity  terms  of  2.6  lfy  in F  and 2.5  lfy  in  F . y
                                                                     x
   224   225   226   227   228   229   230   231   232   233   234