Page 359 - Bird R.B. Transport phenomena
P. 359

Cont.  —  | p = - ( V - p v )  3.1-4           For p = constant, simplifies   to
                               (K)                 (V • v)  = 0


 Motion  General  jpv=  -[V-pw]-Vp-[V- ]  + pg  3.2-9  For т  = 0 this becomes Euler's
 t  T
                               (L)                 equation

 Approximate  j  pv  = -[V  • pvv]  -  Vp  -  [V •  T] + pg  -  pg/3(T -  T)  Displays  buoyancy term
 t
                               (M)

 Energy  In terms of  ^p(X+  1> + Ф) = -(V-p(K  + H +  <I>)v)-(V«q)-(V4T-v])  11.1-9  Exact only  for  Ф time independent
 X+  й  +  Ф  ot               (N)

 In terms of  j-p(K  + Ф) = -(V-p(X  + Ф)у) -  ( v  Vp)  -  ( v  [V-T])  3.3-2  Exact only  for  Ф time independent
 t
 K + Ф                         (O)              From equation    of motion

 In terms of  j  t  p(K + II) = -  (V • p(X + H)v) -  (V • q) -  (V •  [T • v)]  + p(v • g)11.1-7
 X+ U                          (P)


 In terms of  j  t  pK = -  (V • pkv)  -  (v • Vp) -  (v •  [V • T])  4- p(v • g)  3.3-1  From equation  of motion
 к  = h 2                      (Q)


 In terms of  ^  pQ  =  -(V  • pUv)  -  (V  •  q)  -  p(V  • v)  -  (T:VV)  11.2-1  Term containing  (V • v) is zero  for
 U                             (R)                 constant p

 In terms of  ^ p H  =  -(V-pHv)  -  (V  •  q)  -  (T:VV) +  Щ  H  =  U  +  {pip)

 H                             (S)

 Entropy  —  fpS  = -(V-pSv)  "  (^  - | )  -  ^ ( q -  VT)  -  1(T:VV)  11D.1-1  Last two terms describe entropy
 t
                               (T)                 production
   354   355   356   357   358   359   360   361   362   363   364