Page 364 - Tunable Lasers Handbook
P. 364

324     Norman P.  Barnes

                   TABLE  2  Effective Nonlinear Coefficient for Uniaxial Crystals0

                   Point group   Interactions 001,010,100   Interactions 110,101,011

                   3           (d,, cos30 - d2: sin3Q) cos0 + d15 sin0   (dl , sin39 + d,,  cos30) cos20
                   32          d,, cos0 cos30               d,, cos20 sin30
                   3m          d,,  sin0 - dll  cos’0  sin34   dz2 cos10 cos30
                   4. Imm      d,, sin0                     0
                   4           (dlL sin20 + d,  cos?@) sin0   (dI4 cos29 - d,, sin20) sin20)
                   32m         d,,  sin0 sin20              d36 sin20 cos29
                   6,6mm       d,: sin0                     0
                   6           (dl, COS30 - d,2 sin30) cos0   (d, , sin39 + dz2 ~0~30) cos%
                   6m2         d2: cos0 sin39               d2: cos10 cos0
                   <In this notation, 0 represents an ordinary wave and 1 represents an extraordinaq wave.


                   TABLE  3  Effective Nonlinear Coefficient in Biaxial Crystals


                   Point group   Plane   Interaction 001,010,100   Interaction 110,101,011
                                      d,,  cos4              d3, sin29
                                      d,2 cos0               d,,  sin20
                                      0                      dl, cos33 + dZ3 sin33 + dj6 sin20
                                      0                      d,,  sin24
                                      0                      d,,  sin20
                                      0                      dj, sin20
                                      d,, sin4               d,,  sin20 + d,?  cos20
                                      d3, sin0               d,, sin% + dIz cos20
                                      d,, cos&  dY2 sin0     0
                                      0                      d,,  sin>@ + d32 cos24
                                      d,,  sin0              0
                                      d,> sin0               0
                   aIn this notation, 0 represents an ordinaq wave and 1 represents an extraordinary wave.



                   can be obtained by evaluating the expressions given in tables, such as Tables 2
                   and  3  [28,29].  For  these  tables,  Kleinman’s  symmetry  condition  has  been
                   assumed. Values  for  the  nonlinear  coefficients  of  several common  nonlinear
                   crystals are found in Table 4 130-321.
                      Kleinman’s symmetry condition reduces the number of  independent contri-
                   butions to the nonlinear matrix and thus simplifies the expressions. Kleinman’s
                   symmetry condition assumes that the components of the nonlinear matrix which
   359   360   361   362   363   364   365   366   367   368   369