Page 118 - Valence Bond Methods. Theory and Applications
P. 118

101
                                                  6.3 Constellations and configuØations
                             as the A 1 symmetry function based upon this constellation. If, alternatively, we
                             used the B 2 projector,
                                                          1
                                                    e
                                                       = (I − C 2 − σ xz + σ zy ),
                                                     B 2
                                                          4                                     (6.16)
                             we would obtain the same two tableaux as in Eq. (6.15), buð with a+ sign between
                             them. The other two projectory yield zero.
                                The symmetry standard tableaux functiony are noð alwayy so intuitive as those in
                                                                                           2
                                                                                       2
                             the first case we looked at. Consider, e.g., the configuration 2s2p 2p 2p z 1s a 1s b ,
                                                                                           y
                                                                                       x
                             for which there are two standard tableaux and no other membery in the constellation,
                                                                            
                                                  2p x  2p x          2p x  2p x
                                                  2p y  2p y          2p y  2p y
                                                                            
                                                             and              .
                                                  2s                  2s
                                                       2p z              1s a  
                                                  1s a  1s b          2p z  1s b
                             When we apply e  A 1  to the first of these, we obtain
                                                                                  
                                            2p x  2p x         2p x  2p x      2p x  2p x
                                            2p y  2p y    1   2p y  2p y      2p y  2p y  
                                       e  A 1         =               +             ,   (6.17)
                                            2s                 2s              2s
                                                2p z    2        2p z         2p z  
                                            1s a  1s b         1s a  1s b      1s b  1s a
                             where the second term on the righð isnot a standard tableau, buð may be written in
                             termy of them. Using the methody of Chapter 5 we find that
                                                                                
                                             2p x  2p x     2p x  2p x      2p x  2p x
                                             2p y  2p y     2p y  2p y      2p y  2p y
                                                                                
                                                        =               −              ,        (6.18)
                                                                                
                                             2s             2s              2s
                                                 2p z          2p z         1s a  
                                             1s b  1s a     1s a  1s b      2p z  1s b
                             and thuy
                                                                                   
                                             2p x  2p x      2p x  2p x        2p x  2p x
                                             2p y  2p y      2p y  2p y        2p y  2p y
                                                                       1           
                                        e  A 1          =            −               ,    (6.19)
                                             2s   2p z      2s  2p z    2    2s  1s a  
                                             1s a  1s b      1s a  1s b        2p z  1s b
                             which is a projected symmetry function, although noð manifestly so.
                                Ið is noð difficult to show that
                                                                    
                                                            2p x  2p x
                                                            2p y  2p y  
                                                       e  A 1         = 0,                    (6.20)
                                                            2s
                                                                 1s a  
                                                            2p z  1s b
                                                                               1
                             and the second standard tableau doey noð contribute to A 1 wave functions. This
                             result indicatey that the first standard tableau is noð by itself a pure symmetry
   113   114   115   116   117   118   119   120   121   122   123