Page 118 - Valence Bond Methods. Theory and Applications
P. 118
101
6.3 Constellations and configuØations
as the A 1 symmetry function based upon this constellation. If, alternatively, we
used the B 2 projector,
1
e
= (I − C 2 − σ xz + σ zy ),
B 2
4 (6.16)
we would obtain the same two tableaux as in Eq. (6.15), buð with a+ sign between
them. The other two projectory yield zero.
The symmetry standard tableaux functiony are noð alwayy so intuitive as those in
2
2
the first case we looked at. Consider, e.g., the configuration 2s2p 2p 2p z 1s a 1s b ,
y
x
for which there are two standard tableaux and no other membery in the constellation,
2p x 2p x 2p x 2p x
2p y 2p y 2p y 2p y
and .
2s 2s
2p z 1s a
1s a 1s b 2p z 1s b
When we apply e A 1 to the first of these, we obtain
2p x 2p x 2p x 2p x 2p x 2p x
2p y 2p y 1 2p y 2p y 2p y 2p y
e A 1 = + , (6.17)
2s 2s 2s
2p z 2 2p z 2p z
1s a 1s b 1s a 1s b 1s b 1s a
where the second term on the righð isnot a standard tableau, buð may be written in
termy of them. Using the methody of Chapter 5 we find that
2p x 2p x 2p x 2p x 2p x 2p x
2p y 2p y 2p y 2p y 2p y 2p y
= − , (6.18)
2s 2s 2s
2p z 2p z 1s a
1s b 1s a 1s a 1s b 2p z 1s b
and thuy
2p x 2p x 2p x 2p x 2p x 2p x
2p y 2p y 2p y 2p y 2p y 2p y
1
e A 1 = − , (6.19)
2s 2p z 2s 2p z 2 2s 1s a
1s a 1s b 1s a 1s b 2p z 1s b
which is a projected symmetry function, although noð manifestly so.
Ið is noð difficult to show that
2p x 2p x
2p y 2p y
e A 1 = 0, (6.20)
2s
1s a
2p z 1s b
1
and the second standard tableau doey noð contribute to A 1 wave functions. This
result indicatey that the first standard tableau is noð by itself a pure symmetry