Page 321 - Vibrational Spectroscopic Imaging for Biomedical Applications
P. 321
Raman Imaging for Biomedical Applications in Clinics 295
33. T. Udelhoven, M. Novozhilov, and J. Schmitt, “The NeuroDeveloper®: A Tool
for Modular Neural Classification of Spectroscopic Data,” Chemometrics and
Intelligent Laboratory System, 66(2):219–226, 2003.
34. Y. Naito, A. Toh-e, and H.-o. Hamaguchi, “In Vivo Time-Resolved Raman
Imaging of a Spontaneous Death Process of a Single Budding Yeast Cell,”
Journal of Raman Spectroscopy, 36:837–839, 2005.
35. S. Koljenovic, L. P. Choo-Smith, T. C. Bakker Schut, J. M. Kros, H. J. van den
Berge, and G. J. Puppels, “Discriminating Vital Tumor from Necrotic Tissue
in Human Glioblastoma Tissue Samples by Raman Spectroscopy,” Laboratory
Investigation, 82(10):1265–1277, 2002.
36. C. M. Creely, G. Volpe, G. P. Singh, M. Soler, and D. V. Petrov, “Raman Imaging
of Floating Cells,” Optics Express, 13(16):6105–6110, 2005.
37. P. R. T. Jess, V. Garce s-Chavez, A. C. Riches, C. S. Herrington, and K. Dholakia,
“Simultaneous Raman Micro-Spectroscopy of Optically Trapped and Stacked
Cells,” Journal of Raman Spectroscopy, 38:1082–1088, 2007.
38. C. Krafft, T. Knetschke, A. Siegner, R. H. W. Funk, and R. Salzer, “Mapping
of Single Cells by Near Infrared Raman Microspectroscopy,” Vibrational
Spectroscopy, 32:75–83, 2003.
39. C. Krafft, T. Knetschke, R. H. W. Funk, and R. Salzer, “Identification of Organelles
and Vesicles in Single Cells by Raman Microspectroscopic Mapping,” Vibrational
Spectroscopy, 38:85–93, 2005.
40. G. J. Puppels, H. S. P. Garritsen, G. M. J. Segers-Nolten, F. F. M. de Mul, and
J. Greve, “Raman Microspectroscopic Approach to the Study of Human
Granulocytes,” Biophysical Journal, 60:1046–1056, 1991.
41. K. W. Short, S. Carpenter, J. P. Freyer, and J. R. Mourant, “Raman Spectroscopy
Detects Biochemical Changes due to Proliferation in Mammalian Cell Cultures,”
Biophysical Journal, 88:4274–4288, 2005.
42. N. Uzunbajakava, A. Lenferink, Y. Kraan, E. Volokhina, G. Vrensen,y J.
Greve, and C. Otto, “Nonresonant Confocal Raman Imaging of DNA and
Protein Distribution in Apoptotic Cells,” Biophysical Journal, 84:3968–3981,
2003.
43. Y. S. Yamamoto, Y. Oshima, H. Shinzawa, T. Katagiri, Y. Matsuura, Y. Ozaki,
and H. Sato, “Subsurface Sensing of Biomedical Tissues Using a Miniaturized
Raman Probe: Study of Thin-Layered Model Samples,” Analytica Chimica Acta
619(1):8–13, 2008.
44. J. Mourant, P. Kunapareddy, S. Carpenter, and J. P. Freyer, “Vibrational
Spectroscopy for Identification of Biochemical Changes Accompanying
Carcinogenesis and the Formation of Necrosis,” Gynecologic Oncology, 99:S58–
S60, 2005.
45. C. Yu, E. Gestl, K. Eckert, D. Allara, and J. Irudayaraj, “Characterization of
Human Breast Epithelial Cells by Confocal Raman Microspectroscopy,” Cancer
Detection and Prevention, 30:515–522, 2006.
46. S. Swain, “Raman Microspectroscopy for Non-Invasive Biochemical Analysis
of Single Cells,” Biochemical Society Transaction, 35:544–549(3), 2007.
47. H.-J. van Manen, Y. M. Kraan, D. Roos, and C. Otto, “Single-Cell Raman
and Fluorescence Microscopy Reveal the Association of Lipid Bodies with
Phagosomes in Leukocytes,” PNAS, 102(29):10159–10164, 2005.
48. C. Krafft, D. Codrich, G. Pelizzo, and V. Sergo, “Raman and FTIR Imaging
of Lung Tissue: Methodology for Control Samples,” Vibrational Spectroscopy,
46:141–149, 2008.
49. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M.
S. Feld, “Diagnosing Breast Cancer by Using Raman Spectroscopy,” PNAS,
102(35):12371–12376, 2005.
50. Y.-S. Huang, T. Karashima, M. Yamamoto, T. Ogura, and Hiro-o. Hamaguchi,
“Raman Spectroscopic Signature of Life in a Living Yeast Cell,” Journal of Raman
Spectroscopy, 35:525–526, 2004.
51. R. E. Kast, G. K. Serhatkulu, A. Cao, A. K. Pandya, H. Dai, J. S. Thakur, V. M.
Naik, et al., “Raman Spectroscopy Can Differentiate Malignant Tumor from
Normal Breast Tissue and Detect Early Neoplastic Changes in a Mouse Model,”
Biopolymers, 89(3):235–241, 2008.