Page 343 - Vibrational Spectroscopic Imaging for Biomedical Applications
P. 343
Raman Imaging of Str ess Patterns in Biomaterials 317
25. A. Mirgorodsky, M. B. Smirnov, and P. E. Quintard, “Phonon Spectra Evolution
and Soft-mode Instabilities of Zirconia During the c–t–m Transformation,”
Journal of Physics and Chemistry of Solids, 60:985–992, 1997.
26. T. Merle, R. Guinebretiere, A. Mirgorodsky, and P. E. Quintard, “Polarized
Raman Spectra of Tetragonal Pure ZrO Measured on Epitaxial Films,” Physical
2
Review B, 65:144302-1, 2002.
27. J. Kruzic, J. Scott, R. Nalla and R. O. Ritchie, “Propagation of Surface Fatigue
Cracks in Human Cortical Bone,” Journal of Biomechanics, 39:968–972,
2006.
28. D. Vashishth, J. C. Behiri, and W. Bonfield, “Crack Growth Resistance in Cortical
Bone: Concept of Microcrack Toughening,” Journal of Biomechanics, 30:763–769,
1997.
29. R. K. Nalla, J. J. Kruzic, J. H. Kinney, and R. O. Ritchie, “Effect of Aging on
the Toughness of Human Cortical Bone: Evaluation By R-Curves,” Bone, 35:
1240–1246, 2004.
30. P. Fratzl, H. S. Gupta, E. P. Paschalis, and P. Roschger, “Structure and Mechanical
Quality of the Collagen-Mineral Nano-Composite in Bone,” Journal of Materials
Chemistry, 14:2115–2123, 2004.
31. S. Nomura and T. Takano-Yamamoto, “Molecular Events Caused by Mechanical
Stress in Bone,” Matrix Biology, 19:91–96, 2000.
32. J. B. Thompson, J. H. Kindt, B. Drake, H. G. Hansma, D. E. Morse, and P. K.
Hansma, “Bone Indentation Recovery Time Correlates with Bond Reforming
Time,” Nature, 6865:773–776, 2001.
33. P. Zioupos, “Accumulation of In-Vivo Fatigue Microdamage and Its Relation
to Biomechanical Properties in Ageing Human Cortical Bone,” Journal of
Microscopy, 201:270–278, 2001.
34. D. B. Burr, M. R. Forwood, D. P. Fyhrie, R. B. Martin, M. B. Schaffler, and C. H.
Turner, “Bone Microdamage and Skeletal Fragility in Osteoporotic and Stress
Fractures,” Journal of Bone and Mineral Research, 1:6–15, 1997.
35. A. C. Courtney, W. C. Hayes, and L. J. Gibson, “Age-Related Differences in
Post-Yield Damage in Human Cortical Bone: Experiment and Model,” Journal
of Biomechanics, 11:1463–1471, 1996.
36. R. H. Hannink and M. V. Swain, “Progress in Transformation Toughening of
Ceramics,” Annual Reviews of Materials Science, 24:359–408, 1994.
37. L. R. F. Rose, “The mechanics of Transformation Toughening,” Proceedings of
the Royal Society London A, 412:169–197, 1987.
38. M. G. Cain, S. M. Bennington, M. H. Lewis, and S. Hull, “Study of the
Ferroelastic Transformation in Zirconia by Neutron Diffraction,” Philosophical
Magazine Part B, 69:499–507, 1994.
39. S. J. Hampton, T. P. Andriacchi, and J. O. Galante, “Three Dimensional Stress
Analysis of The Femoral Stem of a Total Hip Prostheses,” Journal of Biomechanics,
13:443–448, 1980.
40. D. L. Bartel, V. L. Bicknell, and T. M. Wright, “The Effect of Conformity, Thickness,
and Material on Stresses in Ultra-High Molecular Weight Components for Total
Joint Replacement,” Journal of Bone and Joint Surgery America, 68:1041–1051, 1986.
41. F. Bachtar, X. Chen, and T. Hisada, “Finite Element Contact Analysis of the
Hip Joint,” Medical and Biological Engineering and Computing, 44:643–651,
2006.
42. M. Sundfeldt, L. V. Carlsson, C. B. Johansson, P. Thomsen, and C. Gretzer,
“Aseptic Loosening, Not Only a Question of Wear: A Review of Different
Theories,” Acta Orthopaedia, 77:177–197, 2006.
43. S. Williams, T. D. Stewart, E. Ingham, M. H. Stone, and J. Fisher, “Influence of
Microseparation and Joint Laxity on Wear of Ceramic on Polyethylene, Ceramic
on Ceramic and Metal on Metal Total Hip Replacements,” Journal of Bone and
Joint Surgery British, 85-B:57–63, 2003.
44. L. Duisabeau, P. Combrade, and B. Forest, “Environmental Effect of Fretting of
Metallic Materials for Orthopaedic Implants,” Wear, 256:805–816, 2004.
45. E. Ebramzadeh, F. Billi, S. N. Sangiorgio, S. Mattes, W. Schmoelz, and L. Dorr,
“Simulation of Fretting Wear at Orthopaedic Implant Interfaces,” Journal of
Biomechanical Engineering, 127:357–364, 2005.