Page 85 - Welding Robots Technology, System Issues, and Applications
P. 85

Welding Robots
                           70
                           [35] Seo, D. W., Jeon, Y.B., Lim, J.K., Effect of electric weld current on spatter reduction in
                               spot welding process, 5th Int. Conf. on Fracture and Strength of Solids/2nd Int. Conf.
                               on Physics and Chemistry of Fracture and Failure Prevention, Oct. 20-22,  2003,
                               Advances in Fracture and Failure Prevention, PTS 1 and 2, 1623-1628, 2004
                           [36] Chang, B.H., Zhou, Y., Numerical study on the effect of electrode force in small-scale
                               resistance spot welding, 9th Int. Man. Conf., Aug 16-17, 2000, J Mater Process Tech
                               139 (1-3) 2003, 635-641.
                           [37] Kimchi, M., Workman, D., Gould, J.E., Advanced welding techniques for aluminum
                               alloys, Welding in the World, July 2002, vol. 46, Special issue, pp. 157-168.
                           [38] Karagoulis, M.J., Resistance seam welding, ASM Handbook, Vol 6, Welding, Brazing
                               and Soldering, pp.238-246.
                           [39] Thomas, W. M., Nicholas, E. D., Needham, M. G., Templesmith, Dawes, C. J., Friction
                               stir butt welding, International patent application PCT/GB92/02203, GB  Patent
                               application 9125978.8. US Patent 5.460.317, 1001.
                           [40] C. M. Chen, R. Kovacevic, Finite element modeling of friction stir welding – thermal
                               and thermomechanical analysis, Int. J. Machine Tools and Manufacture 43 (2003)
                               1319-1326.
                           [41] Khandkar, M.  Z. H., Khan, J. A., Reynolds, A. P., Prediction of temperature
                               distribution  and thermal history during friction stir welding:  an input torque  based
                               model, to appear in Science and Technology of Welding and Joining.
                           [42] Colligan, K.,  Material flow  behaviour during friction stir  welding of  aluminum,
                               Welding J. 78(7) 1999, pp. 229-237.
                           [43] Li, Y., Murr,  L. E., McClure, J. C., Flow visualization and residual microstructures
                               associated with the friction-stir welding of 2024 aluminum to 6061 aluminum,
                               Materials Science and Engineering A271 (1999), pp. 213-223.
                           [44] Fonda, R. W., Bingert, J. F., Colligan, K. J., Development of grain structure during
                               friction stir welding, Scripta Materialia 51 (2004), pp. 243-248.
                           [45] Thomas, W. M., Threadgill, P. L. and Nicholas, E. D., Feasibility of friction stir
                               welding steel, Science and Technology of Welding and Joining (1999), vol. 4 (6), pp.
                               365-372.
                           [46] Cook, G. E., Smartt, H. B., Mitchell, J. E., Strauss, A. M., Crawford, R., Controlling
                               robotic friction stir welding, Welding J. 82(6) 2003, pp. 28-34.
                           [47] ESAB Genaral Catalog, www.esab.com, 2005.
                                                                                             th
                           [48] Thomas, W.M. and Dolby, R. E. 2003, Friction stir welding developments, Proc. 6
                               Int. Conf. on Trends in Welding Research. Eds. S. A. David, T. DebRoy, J. C. Lippold,
                               H. B. Smartt and J. M. Vitek, pp. 203-211. ASM International.
                           [49] Thomas, W. M., Staines, D. G., Norris, J. M., Frias, R., Friction stir welding – Tools
                               and development, FSW Seminar, Porto, Portugal, TWI 3/12/02.
                           [50] Dawes, C., Thomas, W, Development of improved tool designs for friction stir welding
                                          st
                               of aluminum, 1  Int. Sym. On Frictio Stir Welding, Thousand Oaks, California, USA
                               (1999).
                           [51] Strombeck, A., Schilling, C., dos Santos, J., Robotic friction stir welding,  GKSS
                               Workshop, Reibruhrschweissen, Geesthacht, Germany, 2002.
                           [52] R. Leal and A. Loureiro; Defects formation in friction stir welding of aluminum alloys;
                               Materials Science Fórum Vols. 455-456 (2004) 299-302.
                           [53] Kohn, G., Greenberg, Y., Makover, I., Muntz, A., Laser-assisted friction stir welding,
                               Welding J. 81(2) 2002, pp. 46-48.
                           [54] Sakano, R., Murakami, K., Yamashita, K., Hyoe, T., Fujimoto, M., Inuzuka, M.,
                               Nagao, M., Kashiki, H., Development of spot FSW robot systems for automobile body
                                       rd
                               members, 3  Int. Sym. on Friction Stir Welding, Port Islands, Kobe, Japan 2001.
                           [55] The Welding Institute, UK, http://www.twi.co.uk/
                           [56] http://www.cpwr.com/hazpdfs/kfwelding.PDF
   80   81   82   83   84   85   86   87   88   89   90