Page 75 - Wind Energy Handbook
P. 75

ROTOR DISC THEORY                                                       49

                                                    3
                                       äP ¼ 2räA d U a(1   a) 2
                                                    1
             Hence
                                      3
                                              2
                                                                  2
                              2räA d U a(1   a) ¼ räA d U 1 (1   a)2Ù a9r 2
                                      1
             and
                                          2
                                                       2 2
                                         U a(1   a) ¼ Ù r a9
                                          1
             Ùr is the tangential velocity of the spinning annular ring and so º r ¼ Ùr=U 1 is
             called the local speed ratio. At the edge of the disc r ¼ R and º ¼ ÙR=U 1 is known
             at the tip speed ratio. Thus
                                                      2
                                            a(1   a) ¼ º a9                       (3:18)
                                                      r
             The area of the ring is äA D ¼ 2ðrär therefore the incremental shaft power is, from
             Equation (3.17),

                                              1   3                2
                                äP ¼ dQÙ ¼     rU 2ðrär 4a9(1   a)º r
                                                  1
                                              2
             The term in brackets represents the power flux through the annulus, the term
             outside the brackets, therefore, is the efficiency of the blade element in capturing
             the power, or blade element efficiency:
                                           ç r ¼ 4a9(1   a)º 2                    (3:19)
                                                         r
             In terms of power coefficient

                                                     2
                                                                   2
                                            3
                                d      4ðrU (1   a)a9º r  8(1   a)a9º r
                                            1
                                                      r
                                                                   r
                                  C P ¼                 ¼
                               dr         1   3    2          R 2
                                            rU ðR
                                              1
                                          2
                                         d               2 3
                                        dì  C P ¼ 8(1   a)a9º ì                   (3:20)
             where ì ¼ r=R.
               Knowing how a and a9 vary radially, Equation (3.20) can be integrated to
             determine the overall power coefficient for the disc for a given tip speed ratio, º.
             3.3.3  Maximum power

             The values of a and a9 which will provide the maximum possible efficiency can be
             determined by differentiating Equation (3.19) by either factor and putting the result
             equal to zero. Whence

                                             d     1   a
                                                a ¼                               (3:21)
                                            da9      a9
   70   71   72   73   74   75   76   77   78   79   80