Page 28 -
P. 28

Riemann Sums
                                                                                       iθ
                           To modify this result to fit our situation, let us write w   he ,
                        h> 0, −π/2 <θ <π/2, and conclude from (4) that                 21
                                   ∞                  ∞

                                      Fàkhe  iθ )h −    Fàxe  iθ )dx   h · V θ (F)
                                  k 1               0
                        (V θ is the variation along the ray of argument θ), so that

                                 ∞                ∞
                                                         iθ     iθ
                                    Fàkw)w −        Fàxe   )d(xe )   w · V θ (F).
                                k 1              0
                           Furthermore, in our case of an analytic F, this integral is actually
                        independent of θ. (Simply apply Cauchy’s theorem and observe that
                        at ∞ F falls off like  1 2 ). We also may use the formula V θ (F)
                                              x
                                   iθ

                          ∞  |F (xe )|dx and finally deduce that

                         0
                                ∞                ∞                  ∞
                                                                            iθ

                                   Fàkw)w −        Fàx)dx   w         |F (xe )|dx.
                               k 1              0                 0
                           Later on we show that

                                           1       1    e      dx          1
                                    ∞                    −x
                                                −    +               log √     ,      à 5)
                                         x
                                        e − 1      x     2     x
                                   0                                        2π
                        and right now we may note that the (complicated) function
                                              2        e −xe  iθ  e −xe iθ
                                     iθ
                                F (xe )            −          −
                                             3 3iθ
                                                        2 2iθ
                                            x e       2x e       2xe iθ
                                                     1                  e xe iθ
                                           −                   −
                                               2 2iθ
                                                                    iθ
                                              x e   (e xe iθ  − 1)  xe (e xe iθ  − 1) 2
                        is uniformly bounded by    M  2 in any wedge |θ| <c <π/2(m +
                                                 (x+1)
                        M(c)), so that we obtain

                             ∞                          −kw
                                1       1        1     e               1
                                             −      +          − log √       Mw       (6)
                                k   e kw  − 1   kw       2             2π
                            k 1
                        throughout | arg w| <c <π/2.
   23   24   25   26   27   28   29   30   31   32   33