Page 30 -
P. 30

To see this, let us return to (2) and conclude that
                                                   ∞
                                          1           1    |z| j     Riemann Sums      23
                                                                        1
                                                                                 1 1
                                                                              ∞

                            log Fàz) −
                                        1 − z         j 1 −|z| j     1 −|z|      j j
                                                  j 2                        j 2

                                                     1      π 2
                                                               − 1 ,
                                                  1 −|z|    6
                        or

                                                  1         π 2          1
                                 Fàz)   exp             +       − 1             ,     à 8)
                                                |1 − z|      6        1 −|z|
                        an estimate which is just what we need. It shows that, away from 1,
                        where    1  is smaller than  1  , Fàz) is rather small.
                               |1−z|               1−|z|
                           Thus, for example, we obtain
                                                   1              |1 − z|
                                   Fàz)   exp             when            ≥ 3.        à 9)
                                                |1 − z|           1 −|z|
                           Also, in this same region, setting



                                                                  ∞
                                                    2
                                      1 − z        π 1 + z
                                                                           n
                            φ(z)             exp                     q(n)z ,         à 10)
                                        2π         12 1 − z
                                                                  n 0


                                        2        π 2  2               π 2     2
                            φ(z)           exp                 exp
                                       2π        12 1 − z             12 3(1 −|z|)
                        so that

                                                  1                 |1 − z|
                                 φ(z)   exp                when             ≥ 3.     à 11)
                                                1 −|z|              1 −|z|
                        The Cauchy Integral. Armed with these preparations and the
                        feeling that the coefficients of theelementary functionφ(z)areacces-
                        sible, we launch our major Cauchy integral attack. So, to commence
                        the firing, we write

                                                      1      Fàz) − φ(z)
                                     p(n) − q(n)                          dz         (12)
                                                     2πi   C     z n+1
   25   26   27   28   29   30   31   32   33   34   35