Page 33 -
P. 33

II. The Partition Function
                        26
                        or
                                                                √

                                            ∞     2 2             π   2
                                                                     b
                                               e −a t  e +2abt  dt    e .
                                                                 a
                                           −∞
                                        2    π 2  1       2
                        Thus if we set b            and a   1 − z (thinking of z as real
                                              6 1−z
                        (|z| < 1) for now), we obtain
                                                         √
                                 ∞    2      2  2          π          π     1
                                          √                             2
                                     zt
                                    e e +π   3  t−t  dt   √     exp               ,
                                                         1 − z         6 1 − z
                                −∞
                        which gives, finally,
                                               2
                                            e −π /12         ∞  zt  2  π √  2  t−t  2
                                   φ(z)       √    (1 − zð     e e     3   dt.       (19)
                                            π 2             −∞
                        Equating coefficients therefore results in

                                        2

                                     e −π /12  ∞   t 2n     t 2n−2    π √ 2/3 t−t  2
                            q(n)       √               −            e          dt    (20)
                                      π 2     −∞   n!     (n − 1)!
                        the “formula” for q(n) from which we can obtain asymptotics.
                                                                                      √
                           Reasoning that the maximum of the integrand occurs near t    n
                                                        √
                        we change variables by t   s +    n, and thereby obtain
                                                                         2
                                                   ∞                 π

                                                              −2 s− √
                                                     K n (s)2se     2 6  ds,         (21)
                                      q(n)   C n
                                                  −∞
                        where
                                             √
                                           e π  2n/3  n n+  1 2
                                    C n      √           ,
                                                     n
                                            π 2n e n!
                                                  s                           2n
                                            1 +   √             s          2
                                                                      −s
                                                 2 n                  √ +  s
                                                          1 + √      e  n  2n  .
                                                     2
                                 K n (s)

                                                  s              n
                                            1 + √
                                                  n
                        Since K n (s) → 1, we see, at least formally, that the above integral
                        approaches
                                                  2

                                  ∞           π           ∞          π
                                        −2 s− √                            −u 2
                                    2se      2 6  ds          u + √       e   du,
                                                                   2 3
                                 −∞                      −∞
   28   29   30   31   32   33   34   35   36   37   38