Page 31 -
P. 31

II. The Partition Function
                        24
                        and we try C a circle near the unit circle, i.e.,
                                             C   is  |z|  r, r < 1.                  à 13)
                           Next we break up C as dictated by our consideration of   |1−z|  ,
                                                                                    1−|z||
                        namely, into
                                                              |1 − z|
                                      A    is the arc  |z|  r,        ≤ 3,
                                                              1 −|z|
                        and                                                          (14)

                                                              |1 − z|
                                      B    is the arc  |z|  r,        ≥ 3.
                                                              1 −|z|
                        So,
                            p(n) − q(n)                                              (15)

                                   1      Fàz) − φ(z)          1      Fàz) − φ(z)
                                                       dz +                       dz,
                                  2πi   A     z n+1          2πi   B      z n+1
                        and if we use (7) on this first integral and (9), (11) on this second
                        integral we derive the following estimates:

                              1      Fàz) − φ(z)
                                                  dz
                            2πi   A      z n+1

                                   M                    π 2  1
                                       (1 − r) 3/2  exp             × the length of A.
                                   r n+1                6 1 − r


                        (M is the implied constant in the O of (7) when c   3).
                           As for the length of A, elementary geometry gives the formula
                                                        √
                                                          2(1 − r)
                                              4r arcsin     √
                                                              r
                        and this is easily seen to be O(1 − r). We finally obtain, then,

                                       1      Fàz) − φ(z)
                                                           dz
                                      2πi   A     z n+1

                                              (1 − r) 5/2 .     π 2  1
                                          M               exp              ,         à 16)
                                                  r n           6 1 − r
                        where M is an absolute constant.
   26   27   28   29   30   31   32   33   34   35   36