Page 35 -
P. 35

II. The Partition Function
                        28
                        and using (26) for negative s gives us
                                                                            2n−2

                                                     2  2s         s    −s
                                                                        √
                                                    s − √
                                 |K n (s)|≤ (1 − s)e     n    1 + √     e  n
                                                                    n

                                                     2  2s  n−1 2
                                                              s
                                                    s − √
                                         ≤ (1 − s)e      n  e  n
                                                              √  2
                                                      2
                                           (1 − s)e 2s +1−(1+s/ n)
                        or
                                                          2
                                      |K n (s)|≤ (1 − s)e 2s +1  for  s< 0.          à 28)
                           Thus (27) and (28) give the bound for our integral in (21) of
                                                         2
                                              2      π
                                              s −2 s− √
                                          2se       2 6    for   s ≥ 0,
                        and
                                                      √
                                        2s(s − 1)e 1+π  2/3s  for  s< 0.
                           This bound, integrable over (−∞, ∞), gives us the required
                        dominated convergence, and the passage to the limit is indeed
                        justified.
                           Finally we give the following:


                        Evaluation of our Integral (5). To achieve this let us first note that
                        as N →∞ our integral is the limit of the integral

                                                                      −x
                                     ∞                 1       1     e     dx
                                       (1 − e −Nx )         −     +
                                                      x
                                    0                e − 1     x      2     x
                        (by dominated convergence, e.g.). But this integral can be split into

                             ∞                 1       1   dx       ∞            e
                                                                                  −x
                               (1 − e −Nx )         −          +     (1 − e −Nx )    dx
                                             x
                            0               e − 1      x    x      0             2x
                              N                      x               −x    −(N+1)x
                                    ∞      1 + x − e        1    ∞  e   − e
                                      e −kx     2     dx +                         dx.
                              k 1  0           x            2   0         x
                           Next note that
                                          1 + x − e x         1  (1−t)x
                                                       −       te     dt
                                              x 2           0
   30   31   32   33   34   35   36   37   38   39   40