Page 36 -
P. 36

and
                                                              N+1
                                         e −x  − e −(N+1)x    The Coefficients of q(n)  29
                                                                   −sx
                                                                  e   ds.
                                               x             1
                        Hence, by Fubini, we may interchange and obtain, for our expression,
                        the elementary sum
                                N     1                     N+1
                                           t           1        ds
                             −                   dt +
                                       k + t − 1       2         s
                               k 1  0                      1
                                   N
                                                       k              1
                                       (k − 1) log           − 1 +       log(N + 1)
                                                     k − 1            2
                                  k 1
                                   N

                                     (k − 1) log k − (k − 1) log(k − 1) − N
                                  k 1
                                      1
                                   +     log(N + 1)
                                      2
                                 N log N − log N − log(N − 1) − ··· − log 1 − N

                                      1
                                   +     log(N + 1)
                                      2
                                                             1
                                 N log N − log N! − N +        log(N + 1).
                                                             2
                                                          √        N
                           What luck! This is equal to log  N+1(N/e)  and so, by Stirling’s
                                                              N!
                                                         1
                        formula, indeed approaches log √   .
                                                         2π
                           (Stirling’s formula was used twice and hence needn’t have been
                                                                                    √
                        used at all! Thus we ended up not needing the fact that C     2π
                                              √
                                                       n
                        in the formula n! ∼ C n(n/e) since the C cancels against a C in
                                                                          √
                        the denominator. The n! formula with C instead of   2π is a much
                        simpler result.)
   31   32   33   34   35   36   37   38   39   40   41