Page 109 -
P. 109

2.5 Remarks    93

                                                    −∆ u = 0 in Ω c ,                   (2.5.8)
                                                       ∗
                                α
                           in C (Ω c ∪ Γ) and up to Γ c from either side with possibly different
                           traces at Γ c ,
                                                ±        ±        ±      ±
                                                                  c
                                                0
                                               γ u| Γ c  = ϕ  and T u = ψ               (2.5.9)
                           where we have the transmission properties
                                         +     −                  +    −       α
                                         0
                                               0
                                                                               0
                             [γ 0 u]| Γ c  := (γ u − γ u)| Γ c  =[ϕ]| Γ c  =(ϕ − ϕ )| Γ c  ∈ C (Γ c )  (2.5.10)
                           and
                                         +      −                  +    −        α
                                         c      c                                1
                             [T c u]| Γ c  := (T u − T u)| Γ c  =[ψ]| Γ c  := (ψ − ψ )| Γ c  ∈ C (Γ c ) (2.5.11)
                           with
                                  α
                                                         +
                                                α
                                 C (Γ c ):= {v ∈ C (Γ c ) | (γ v − γ v)| γ = 0} ,      (2.5.12)
                                                               −
                                  0                     0      0
                           and
                                                                           α
                                  α                         −  1 2 ψ (x) | ψ ∈ C (Γ c )} .
                                 C (Γ c ):= {ψ = {dist (x − γ)}  1    1                (2.5.13)
                                  1
                              For the classical insertion problem with Dirichlet conditions γ 0 u = ϕ ∈
                             α
                                                         α
                           C (Γ)on Γ the functions ϕ ∈ C (Γ c ) are given. The unknown field u then
                                                    ±
                                                         0
                           has to satisfy the boundary conditions
                                                                 +
                                                                       −
                                    γ 0 u| Γ = ϕ on Γ  and with (ϕ − ϕ )| γ = 0 ,
                                                                                       (2.5.14)
                                    +         +       −         −
                                    0                 0
                                   γ u| Γ c  = ϕ  and γ u| Γ c  = ϕ  on Γ c
                           as well as the transmission conditions (2.5.10) and (2.5.11).
                              By extending Γ c up to the boundary Γ ficticiously and applying the Green
                           formula to the two ficticiously separated subdomains of Ω one finds the rep-
                           resentation formula


                              u(x)=    E(x, y)ψ(y)ds y −  T y E(x, y)  ϕ(y)ds y
                                     Γ                 Γ
                                                                                       (2.5.15)

                                                                  c
                                   −     E(x, y)[ψ]| Γ c (y)ds y +  T E(x, y)  [ϕ]| Γ c  (y)ds y
                                                                 y
                                     y∈Γ c                  Γ c
                           for x ∈ Ω c .
                              By taking the traces of (2.5.15) at Γ and at Γ c one obtains the following
                           system of equations on Γ and on Γ c :
   104   105   106   107   108   109   110   111   112   113   114