Page 110 -
P. 110

94     2. Boundary Integral Equations


                               E(x, y)ψ(y)ds y −   E(x, y)[ψ](y)ds y
                            y∈Γ                y∈Γ c

                                1                      c
                              = ϕ(x)+ Kϕ(x) −        T E(x, y)  [ϕ]ds y for x ∈ Γ,
                                2                     y
                                                y∈Γ c
                                                                                       (2.5.16)

                              −    E(x, y)ψ(y)ds y +  E(x, y)[ψ](y)ds y
                               y∈Γ                Γ c

                                  1     +    −            c
                              = −  ϕ (x)+ ϕ (x) +       T E(x, y)  [ψ]ds y for x ∈ Γ c .
                                  2                      y
                                                    Γ c
                                                                             α
                                                         α
                           This is a coupled system for ψ ∈ C (Γ)on Γ and [ψ] ∈ C (Γ c )on Γ c , which,
                                                                             1
                                                                         +
                           in fact, is uniquely solvable for any given triple (ϕ, ϕ , ϕ ) with the required
                                                                            −
                           properties.
                              For the classical crack problem with Dirichlet conditions on Γ, e.g. as
                                   α
                                                     α
                                                                                 −
                           ψ +  ∈ C (Γ c )and ψ −  ∈ C (Γ c ) are given with (ψ +  − ψ )| γ = 0;the
                           desired fields u has to satisfy (2.5.8) and the boundary conditions
                              γ 0 u| Γ = ϕ on Γ      +        +    −     = ψ  −        (2.5.17)
                                                                   c
                                                     c     = ψ ,T u| Γ c       on Γ c
                                               and T u| Γ c
                           as well as the transmission conditions (2.5.10), (2.5.11).
                              Again from the representation formula (2.5.15) we now obtain the coupled
                           system

                                                       c
                                E(x, y)ψ(y)ds y +    T E(x, y)  [ϕ](y)ds y
                                                      y
                            y∈Γ                y∈Γ c

                                  1
                               = ϕ(x)+ Kϕ(x)+         E(x, y)[ψ]| Γ c (y)ds y for x ∈ Γ,
                                  2
                                                 y∈Γ c

                                            c                                          (2.5.18)
                             D c [ϕ](x) −  T E(x, y)ψ(y)ds y
                                           x
                                      y∈Γ
                               =  1     +    −         c      )(x)
                                  2  ψ (x)+ ψ (x) − K | ([ψ]| Γ c

                                   −     T x c    T y E(x.y)      ϕ(y)ds y for x ∈ Γ c
                                     y∈Γ
                                                  α
                                                                  α
                           for the unknowns ψ ∈ C (Γ) and [ϕ] ∈ C (Γ c ). As it turns out, this sys-
                                                                 0
                                                                                +
                           tem always has a unique solution for any given triple (ϕ, ψ , ψ ) with the
                                                                                    −
                           required properties.
                              The desired displacement field in Ω c is in both cases given by (2.5.15).
   105   106   107   108   109   110   111   112   113   114   115