Page 13 -
P. 13

Table of Contents














                           Preface ....................................................... VII

                           1.  Introduction ..............................................   1
                               1.1 The Green Representation Formula . . . . . . . . . . . . . . . . . . . . . . .  1
                               1.2 Boundary Potentials and Calder´on’s Projector .............  3
                               1.3 Boundary Integral Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
                                    1.3.1 The Dirichlet Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
                                    1.3.2 The Neumann Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
                               1.4 Exterior Problems ...................................... 13
                                    1.4.1 The Exterior Dirichlet Problem . . . . . . . . . . . . . . . . . . . . 13
                                    1.4.2 The Exterior Neumann Problem . . . . . . . . . . . . . . . . . . . 15
                               1.5 Remarks .............................................. 19
                           2.  Boundary Integral Equations ............................. 25
                               2.1 The Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
                                    2.1.1 Low Frequency Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 31
                               2.2 The Lam´e System ...................................... 45
                                    2.2.1 The Interior Displacement Problem . . . . . . . . . . . . . . . . . 47
                                    2.2.2 The Interior Traction Problem . . . . . . . . . . . . . . . . . . . . . 55
                                    2.2.3 Some Exterior Fundamental Problems . . . . . . . . . . . . . . 56
                                    2.2.4 The Incompressible Material . . . . . . . . . . . . . . . . . . . . . . . 61
                               2.3 The Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
                                    2.3.1 Hydrodynamic Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . 65
                                    2.3.2 The Stokes Boundary Value Problems . . . . . . . . . . . . . . . 66
                                    2.3.3 The Incompressible Material — Revisited . . . . . . . . . . . 75
                               2.4 The Biharmonic Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
                                    2.4.1 Calder´on’s Projector .............................. 83
                                    2.4.2 Boundary Value Problems and Boundary
                                          Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
                               2.5 Remarks .............................................. 91

                           3.  Representation Formulae ................................. 95
                               3.1 Classical Function Spaces and Distributions . . . . . . . . . . . . . . . . 95
                               3.2 Hadamard’s Finite Part Integrals . . . . . . . . . . . . . . . . . . . . . . . . . 101
   8   9   10   11   12   13   14   15   16   17   18